Skip to main content
Log in

A numerical modeling study of the marine boundary layer over the Gulf Stream during cold air advection

  • Articles
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A two-dimensional mesoscale model has been developed to simulate the air flow over the Gulf Stream area where typically large gradients in surface temperature exist in the winter. Numerical simulations show that the magnitude and the maximum height of the mesoscale circulation that develops downwind of the Gulf Stream depends on both the initial geostrophic wind and the large-scale moisture. As expected, a highly convective Planetary Boundary Layer (PBL) develops over this area and it was found that the Gulf Stream plays an important role in generating the strong upward heat fluxes causing a farther seaward penetration as cold air advection takes place. Numerical results agree well with the observed surface fluxes of momentum and heat and the mesoscale variation of vertical velocities obtained using Doppler Radars for a typical cold air outbreak. Precipitation pattern predicted by the numerical model is also in agreement with the observations during the Genesis of Atlantic Lows Experiment (GALE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

u :

east-west velocity [m s−1]

v :

north-south velocity [m s−1]

\(\bar w\) :

vertical velocity in σ coordinate [m s−1]

w :

vertical velocity inz coordinate [m s−1]

gq:

potential temperature [K]

q :

moisture [kg kg−1]

π:

scaled pressure [J kg−1 K−1]

U g :

the east-south component of geostrophic wind [m s−1]

V g :

the north-south component of geostrophic wind [m s−1]

σ:

vertical coordinate following terrain

x :

east-west spatial coordinate [m]

y :

north-south spatial coordinate [m]

z :

vertical spatial coordinate [m]

t :

time coordinate [s]

g :

gravity [m2 s−1]

E :

terrain height [m]

H :

total height considered in the model [m]

q s :

saturated moisture [kg kg−1]

p :

pressure [mb]

p 00 :

reference pressure [mb]

P :

precipitation [kg m−2]

γ:

vertical lapse rate for potential temperature [K km−1]

L :

latent heat of condensation [J kg−1]

C p :

specific heat at constant pressure [J kg−1 K−1]

R :

gas constant for dry air [J kg−1 K−1]

R v :

gas constant for water vapor [J kg−1 K−1]

f :

Coriolis parameter (2Ω sin Φ) [s−1]

Ω:

angular velocity of the earth [s−1]

Φ:

latitude [o]

K H :

horizontal eddy exchange coefficient [m2 s−1]

Δt :

integration time interval [s]

Δx :

grid interval distance inx coordinate [m]

Δy :

grid interval distance iny coordinate [m]

α:

adjustable coefficient inK H

\(\overline {u'w'}\) :

subgrid momentum flux [m2 s−2]

\(\overline {w'\theta '}\) :

subgrid potential temperature flux [m K s−1]

\(\overline {w'q'}\) :

subgrid moisture flux [m kg kg−1 s−1]

u * :

friction velocity [m s−1]

θ * :

subgrid flux temperature [K]

q * :

subgrid flux moisture [kg kg−1]

w * :

subgrid convective velocity [m s−1]

z 0 :

surface roughness [m]

L :

Monin stability length [m]

θ s :

surface potential temperature [K]

k :

von Karman's constant (0.4)

v :

air kinematic viscosity coefficient [m2 s−1]

K M :

subgrid vertical eddy exchange coefficient for momentum [m2 s−1]

K θ :

subgrid vertical eddy exchange coefficient for heat [m2 s−1]

K q :

subgrid vertical eddy exchange coefficient for moisture [m2 s−1]

z i :

the height of PBL [m]

h s :

the height of surface layer [m]

References

  • Akkarapuram, A. F. and Sethu Raman: 1988, ‘A Comparison of Friction Velocities Obtained Using Dissipation Method with an Iterative-Type Bulk Aerodynamic Method Using GALE Marine Observations’,Geophys. Res. Letters,15, 401–404.

    Google Scholar 

  • Anthes, R. A.: 1978, “The Height of the Planetary Boundary Layer and the Production of Circulation in a Sea Breeze Model’,J. Atmos. Sci. 35, 1231–1239.

    Google Scholar 

  • Arya, S. P. S.: 1988,Introduction to Micrometeorology, Academic Press, New York, (in press).

    Google Scholar 

  • Atlas, D., Chou, S.-H., and Byerly, W. P.: 1983, ‘The Influence of Coastal Shape on Winter Meso-scale Air-Sea Introduction’,Mon. Wea. Rev. 111, 245–252.

    Google Scholar 

  • Blackadar, A. K. and Tennekes, H.: 1968, ‘Asymptotic Similarity in Neutral Barotropic Planetary Boundary Layers’,J. Atmos. Sci. 25, 1015–1020.

    Google Scholar 

  • Brown, P. S. and Pandolfo, J. P.: 1979, ‘Numerical Stability of the Combined Advection-Diffusion Equation with Nonuniform Spatial Grid’,Mon. Wea. Rev.,107, 959–963.

    Google Scholar 

  • Businger, J. A., Wyngaard, J. C., Izumi, Y. and Bradley, E. F.: 1971, ‘Flux-Profile Relationships in the Atmospheric Surface Layer’,J. Atmos. Sci. 28, 181–189.

    Google Scholar 

  • Chou, S.-H. and Atlas, D.: 1982, ‘Satellite Estimates of Ocean-Air Heat Fluxes During Cold Air Outbreak’,Mon. Wea. Rev. 110, 1434–1450.

    Google Scholar 

  • Clark, R. H.: 1970, ‘Recommended Methods for the Treatment of the Boundary Layer in Numerical Models’,Aust. Meteorol. Mag. 18, 51–73.

    Google Scholar 

  • Cullen, M. J. P.: 1976, ‘On the Use of Artificial Smoothing in Galerkin and Finite Difference Solutions of the Primitive Equations’,Q.J.R. Meteorol. Soc. 102, 77–93.

    Google Scholar 

  • Deardorff, J. W.: 1966, ‘The Contragradient Heat Flux in the Lower Atmosphere and in the Laboratory’,J. Atmos. Sci. 23, 503–506.

    Google Scholar 

  • Deardorff, J. W.: 1974, ‘Three-Dimensional Numerical Study of the Height and Mean Structure of a Heated Planetary Boundary Layer’,Boundary-Layer Meteorol. 7, 81–106.

    Google Scholar 

  • Dirks, R., Kuettner, J. P., and Moore, J.: 1988, ‘An Overview of the Genesis of Atlantic Lows Experiment’,Bull. Amer. Meteor. Soc., (in press).

  • Estoque, M. A.: 1961, ‘A Theoretical Investigation of the Sea Breeze’,Q.J.R. Meteorol. Soc. 87, 136–146.

    Google Scholar 

  • Hobbs, P. V.: 1987, ‘The Gulf Stream Rainband’,Geophys. Res. Letters 14, 1142–45.

    Google Scholar 

  • Huang, C. Y.: 1986, ‘Numerical Simulations of the Effects of Complex Terrain on Airflow in PBL’, Master thesis submitted to the Department of Atmospheric Sciences, National Taiwan University, Taipei.

    Google Scholar 

  • Leith, 1969, ‘Two Dimensional Eddy Viscosity Coefficients’,Proc. WMO/IUGG Symp. Numerical Wea. Predication, 26 November-4 December, 1968, Meteor. Soc. of Japan, Tokyo, 1–41 to 1–44.

  • Leonard, B. P.: 1979, ‘A Stable and Accurate Convective Modeling Procedure Based on Quadratic Upstream Interpolation’,Comput. Methods Appl. Mech. Eng. 19, 59–98.

    Google Scholar 

  • Lin, Y. L. and Smith, R. B.: 1986, ‘Transient Dynamics of Airflow Near a Local Heat Source’,J. Atmos. Sci.,43, 40–49.

    Google Scholar 

  • Mahrer, Y. and Pielke, R. A.: 1978, ‘A Test of an Upstream Spline Interpolation Technique for the Advective Terms in a Numerical Mesoscale Model’,Mon. Wea. Rev. 106, 818–830.

    Google Scholar 

  • Marshall, R. and Sethu Raman: 1986, ‘C-Band Dopper Radar Observations of the Marine Boundary Layer during GALE, Pre-print Vol. of 23rd conference on Radar Meteorology, Snowmass, CO.

  • McNider, R. T. and Pielke, R. A.: 1981, ‘Diurnal Boundary-Layer Development over Sloping Terrain’,J. Atmos. Sci. 38, 2198–2212.

    Google Scholar 

  • Miller, M. J. and Thorpe, A. J.: 1981, ‘Radiation Conditions for the Lateral Boundaries of Limited Area Numerical Models’,Q.J.R. Meteorol. Soc. 107, 615–628.

    Google Scholar 

  • O'Brien, J. J.: 1970, ‘A Note on the Vertical Structure of the Eddy Exchange Coefficient in the Planetary Boundary Layer’,J. Atmos. Sci. 27, 1213–1215.

    Google Scholar 

  • Orlanski, I.: 1976, ‘A Simple Boundary Condition for Unbounded Hyperbolic Flows’,J. Comput. Phys. 21, 251–269.

    Google Scholar 

  • Physick, W.: 1976, ‘A Numerical Model of the Sea-Breeze Phenomenon Over a Lake of Gulf’,J. Atmos. Sci. 33, 2107–2135.

    Google Scholar 

  • Pielke, R. A.: 1974a, ‘A Three-Dimensional Numerical Model of the Sea Breeze over South Florida’,Mon. Wea. Rev. 102, 115–139.

    Google Scholar 

  • Pielke, R. A.: 1974b ‘A Comparison of Three-Dimensional and Two-Dimensional Numerical Predictions of Sea Breeze’,J. Atmos. Sci. 31, 1577–1585.

    Google Scholar 

  • Pielke, R. A.: 1984,Mesoscale Meteorological Modeling, Academic Press, New York, 612 pp.

    Google Scholar 

  • Pielke, R. A. and Mahrer, Y.: 1975, ‘Technique to Represent the Heated-Planetary Boundary Layer in Mesoscale Models with Coarse Vertical Resolution’,J. Atmos. Sci. 32, 2288–2308.

    Google Scholar 

  • Pielke, R. A. and Mahrer, Y.: 1978, ‘Verification Analysis of the University of Virginia Three-Dimensional Mesoscale Model Prediction over South Florida for July, 1973’,Mon. Wea. Rev. 106, 1568–1589.

    Google Scholar 

  • Pietrafesa, L. J., Janowitz, G. S. and Whitman, P. A.: 1985′, ‘Physical Oceanographic Processes in the Carolina Capes’, Atkinsonet al., (eds.),Oceanography of the Southeastern U.S. Continental Shelf, American Geophysical Union Monograph, 23–32.

  • Raman, S. and Raynor, G. S.: 1975, ‘Surface Drag Coefficient Dependence on the Aerodynamic Roughness of the Sea’,J. Geophys. Res. 80, 4983–4988.

    Google Scholar 

  • Raman, S., Riordan, A. J., Holt, T., Stunder, M., and Hinman, J.: 1985′, Observations of the Marine Boundary Layer Thermal Structure in the Vicinity of the Gulf Stream During a Cold Air Outbreak’,J. of Climatology and Applied Meteor. 25, 14–21.

    Google Scholar 

  • Raman, S. and Riordan, A. J.: 1987, ‘The Genesis of Atlantic Lows Experiment (GALE): The Planetary Boundary Layer Subprogram’,Bull. Amer. Meteor. Soc. 69, 161–172.

    Google Scholar 

  • Shapiro, R.: 1971, ‘The Use of Linear Filtering as a Parameterization of Atmospheric Diffusion’,J. Atmos. Sci. 28, 523–531.

    Google Scholar 

  • Shapiro, R.: 1975, ‘Linear Filtering’,Math. Comp. 29, 1094–1097.

    Google Scholar 

  • Smith, R. B. and Lin, Y. L.: 1982, ‘The Addition of Heat to a Stratified Airstream with Application to the Dynamics of Orographic Rain’,Q.J.R. Meteorol. Soc. 108, 353–378.

    Google Scholar 

  • Smolarkiewicz, P. K.: 1983, ‘A Simple Positive Definite Advection Scheme with Small Implicit Diffusion,Mon. Wea. Rev. 111, 479–486.

    Google Scholar 

  • Sun, W. Y. and Hsu, W. R.: 1988, ‘Numerical Study of a Cold Air Outbreak Over the Ocean’,J. Atmos. Sci.,45, 1205–1227.

    Google Scholar 

  • Yamada, Y. and Mellor, G.: 1975, ‘A Simulation of Wangara Atmospheric Boundary Layer Data’,J. Atmos. Sci. 12, 2309–2329.

    Google Scholar 

  • Wayland, R. and Raman, S.: 1987, ‘Turbulent Kinetic Energy Variations in the Marine Boundary Layer During the January 28, 1986 Cold Air Outbreak’,Proceedings of the Second GALE Workshop, Virginia Beach, November 2–6, 1987.

  • Zilitnkevich, S. S.: 1970, ‘Dynamics of the Atmospheric Boundary Layer’,Hydrometeorol., Leningrad.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, CY., Raman, S. A numerical modeling study of the marine boundary layer over the Gulf Stream during cold air advection. Boundary-Layer Meteorol 45, 251–290 (1988). https://doi.org/10.1007/BF01066673

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01066673

Keywords

Navigation