Advertisement

Mean residence time in peripheral tissue

  • Patrick J. McNamara
  • Joseph C. Fleishaker
  • Thomas L. Hayden
Scientific Note

Abstract

The published methods for determining the mean residence time for drugs in peripheral tissue are reviewed in terms of assumptions involved, advantages and disadvantages. A method for determining mean transit time in peripheral tissue is proposed; this may be a more useful indicator of the tissue retention properties for drug compounds.

Key words

mean residence time peripheral tissue mean residence time local mean transit time first-pass mean residence time area under the curve area under the moment curve peripheral tissue, tissue distribution compartmental model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Riegelman and P. Collier. The application of statistical moment theory to evaluation ofin vivo dissolution time and absorption time.J. Pharmacokin. Biopharm. 8:509–534 (1980).CrossRefGoogle Scholar
  2. 2.
    K. Yamaoka, T. Nakagawa, and T. Uno. Statistical moments in pharmacokinetics.J. Pharmacokin. Biopharm. 6:547–558 (1978).CrossRefGoogle Scholar
  3. 3.
    L. Z. Benet and R. L. Galeazzi. Noncompartmental determination of the steady-state volume of distribution.J. Pharm. Sci. 68:1071–1074 (1979).PubMedCrossRefGoogle Scholar
  4. 4.
    P. Veng-Pedersen and W. Gillespie. Mean residence time in peripheral tissue: a linear disposition parameter useful for evaluating a drug's tissue distribution.J. Pharmacokin. Biopharm. 12:535–543 (1984).CrossRefGoogle Scholar
  5. 5.
    P. Veng-Pedersen and W. Gillespie. The mean residence time of drugs in the systemic circulation.J. Pharm. Sci. 74:791–792 (1985).PubMedCrossRefGoogle Scholar
  6. 6.
    J. C. Fleishaker and P. J. McNamara. Performance of a diffusional clearance model forΒ-lactam antimicrobial agents as influenced by extravascular protein binding interstitial fluid kinetics.Antimicrob. Agents Chemother. 28:369–374 (1985).PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    C. L. DeVane and J. W. Simpkins. Pharmacokinetics of imipramine and its major metabolites in pregnant rats and their fetuses following a single dose.Drug Metab. Dispos. 13:438–442 (1985).PubMedGoogle Scholar
  8. 8.
    W. A. Lassen and W. Perl.Tracer Kinetic Methods in Medical Physiology, Raven Press, New York, 1979, p. 98.Google Scholar
  9. 9.
    M. Gibaldi and D. Perrier.Pharmacokinetics, Marcel Dekker, New York, 1982, pp. 84–88; 232–245.Google Scholar
  10. 10.
    J. H. Matis and T. E. Wehrly. In M. Rowland, L. B. Sheiner, and T. Steiner (eds.),Variability in Drug Therapy: Description, Estimation, and Control, Raven Press, New York, 1985, pp. 31–50.Google Scholar
  11. 11.
    J. G. Wagner and co-workers. Pharmacokinetic parameters estimated from intravenous data by uniform methods and some of their uses.J. Pharmacokin. Biopharm. 5:161–182 (1977).CrossRefGoogle Scholar
  12. 12.
    P. S. Collier. Some considerations on the estimation of steady state apparent volume of distribution and the relationships between volume terms.J. Pharmacokin. Biopharm. 1:93–105 (1983).CrossRefGoogle Scholar
  13. 13.
    J. H. Matis, T. E. Wehrly, and C. M. Metzler. On some stochastic formulations and related statistical moments of pharmacokinetic models.J. Pharmacokin. Biopharm. 11:77–92 (1983).CrossRefGoogle Scholar
  14. 14.
    R. A. Shipley and R. E. Clark.Tracer Methods for In Vivo Kinetics, Theory, and Applications, 1st ed., Academic Press, New York, 1972, pp. 116–118.Google Scholar
  15. 15.
    L. Z. Benet. General treatment of linear mammillary models with elimination from any compartment as used in pharmacokinetics.J. Pharm. Sci. 61:536 (1972).PubMedCrossRefGoogle Scholar
  16. 16.
    D. S. Greene, R. Quintilliani, and C. H. Nightingale. Physiological perfusion model for cephalosporin antibiotics. I. Model selection based on blood drug concentrations.J. Pharm. Sci. 67:191–196 (1978).PubMedCrossRefGoogle Scholar
  17. 17.
    A. Tsuji, T. Yoshikawa, K. Nishide, H. Minami, M. Kimura, E. Nakashima, T. Terasaki, E. Moyamoto, C. H. Nightingale, and T. Yamana. Physiologically based pharmacokinetic model forΒ-lactam antibiotics, I. Tissue distribution and elimination in rats.J. Pharm. Sci. 72:1239–1252 (1983).PubMedCrossRefGoogle Scholar
  18. 18.
    D. M. Ryan, B. Hodges, G. R. Spencer, and S. M. Harding. Simultaneous comparison of three methods for assessing ceftazidime penetration into extravascular fluid.Antimicrob. Agents Chemother. 22:995–998 (1982).PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    P. P. LeBlanc and M. LeBel. Drug distribution in the body: I. Estimation of the rate and extent of distribution using statistical moments.J. Pharm. Belg. 41:69–74 (1986).PubMedGoogle Scholar
  20. 20.
    P. P. LeBlanc and M. LeBel. Drug distribution in the body: II. Estimation of drug concentration in small anatomic compartments.J. Pharm. Belg. 41:75–82 (1986).PubMedGoogle Scholar
  21. 21.
    P. Veng-Pedersen and W. R. Gillespie. Single pass mean residence time in peripheral tissues: A distribution parameter intrinsic to the tissue affinity of a drug.J. Pharm. Sci. 75:1119–1126 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Patrick J. McNamara
    • 1
  • Joseph C. Fleishaker
    • 1
  • Thomas L. Hayden
    • 2
  1. 1.Division of Pharmaceutics and Pharmaceutical Analysis, College of PharmacyUniversity of KentuckyLexington
  2. 2.Mathematics DepartmentUniversity of KentuckyLexington

Personalised recommendations