Transdermal bioavailability and first-pass skin metabolism: A preliminary evaluation with nitroglycerin

  • Emi Nakashima
  • Patrick K. Noonan
  • Leslie Z. Benet


A model comprising six compartments, a systemic and presystemic compartment for nitroglycerin and each of its two dinitrate metabolites is presented to describe the interrelationships between plasma concentrations of the two metabolites and metabolism in skin after intravenous and transdermal ointment administration of nitroglycerin. Using a perfusion-limited pharmacokinetic model, the equation for the calculation of the fraction (F)of the dose of nitroglycerin systemically available from skin was derived independent of nitroglycerin plasma concentrations. Estimated Fvalues (0.68–0.76) are comparable to values reported in Rhesus monkeys (0.80–0.84). Simulated plasma concentration-time profiles were reasonably fitted to the observed concentrations of nitroglycerin and its two metabolites after transdermal administration. This preliminary model suggests that transdermal bioavailability for a drug metabolized in the skin can be reasonably estimated.

Key words

nitroglycerin nitroglycerin dinitrate metabolites transdermal bioavailability skin metabolism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. H. Guy, J. Hadgraft, and D. A. W. Bucks. Transdermal drug delivery and cutaneous metabolism.Xenobiotica,17:325–343 (1987).PubMedCrossRefGoogle Scholar
  2. 2.
    P. Needleman. Organic nitrate metabolism.Ann. Rev. Pharmacol. Toxicol. 16:81–93 (1976).CrossRefGoogle Scholar
  3. 3.
    P. K. Noonan, R. L. Williams, and L. Z. Benet. Dose dependent pharmacokinetics of nitroglycerin after multiple intravenous infusions in healthy volunteers,J. Pharmacokinet, Biopharm. 13:143–157 (1985).CrossRefGoogle Scholar
  4. 4.
    P. K. Noonan and L. Z. Benet. Variable glyceryldinitrate formation as a function of route of nitroglycerin administration.Clin. Pharmacol. Ther. 42 (1987).Google Scholar
  5. 5.
    P. K. Noonan and L. Z. Benet. Formation of mono- and dinitrate metabolites of nitroglycerin following incubation with human blood.Int. J. Pharmaceut. 12:331–340 (1982).CrossRefGoogle Scholar
  6. 6.
    H-L. Fung, S. C. Sutton, and A. Kamiya. Blood vessel uptake and metabolism of organic nitrates in the rat.J. Pharmacol. Exp. Ther. 228:334–341 (1984).PubMedGoogle Scholar
  7. 7.
    P. A. Cossum and M. S. Roberts. Metabolite inhibition of nitroglycerin metabolism in sheep tissue homogenates.J. Pharm. Pharmacol. 37:807–809 (1985).PubMedCrossRefGoogle Scholar
  8. 8.
    P. K. Noonan and L. Z. Benet. The bioavailability of oral nitroglycerin.J. Pharm. Sci. 75:241–243 (1986).PubMedCrossRefGoogle Scholar
  9. 9.
    P. Needleman, D. J. Blehm, and K. S. Rotskoff. Relationship between glutathione-dependent denitration and the vasodilator effectiveness of organic nitrates.J. Pharmacol Exp. Ther. 165:286–288 (1969).PubMedGoogle Scholar
  10. 10.
    J. E. Cottrell and H. Turndorf. Appraisal and reappraisal of cardiac therapy: Intravenous nitroglycerin.Am. Heart J. 96:550–553 (1978).PubMedCrossRefGoogle Scholar
  11. 11.
    P. A. Cossum and M. S. Roberts. Nitroglycerin disposition in human blood.Eur. J. Clin. Pharmacol. 29:169–175 (1985).PubMedCrossRefGoogle Scholar
  12. 12.
    F. W. Lee and L. Z. Benet. Correlation between hemodynamic effects and plasma levels of nitroglycerin dinitrate metabolites in conscious dogs. The 39th National Meeting of Academy of Pharmaceutical Sciences (Abstr.) p. 156 (1985).Google Scholar
  13. 13.
    G. Santus, N. Watari, R. S. Hinz, L. Z. Benet, and R. H. Guy. Cutaneous metabolism of transdermally delivered nitroglycerin in vitro. The 13th International Symposium on Controlled Release of Bioactive Materials, Norfolk, VA., August 1986.Google Scholar
  14. 14.
    R. C. Wester, P. K. Noonan, S. Smeach, and L. Kosobud. Pharmacokinetics and bioavailability of intravenous and topical nitroglycerin in the rhesus monkey:estimate of percutaneous first-pass metabolism.J. Pharm. Sci. 72:745–748 (1983).PubMedCrossRefGoogle Scholar
  15. 15.
    E. F. McNiff, A. Yacobi, F. M. Young-Chang, L. H. Golden, A. Goldfarb, and H-L. Fung. Nitroglycerin pharmacokinetics after intravenous infusion in normal subjects.J. Pharm. Sci. 70:1054–1058 (1981).PubMedCrossRefGoogle Scholar
  16. 16.
    D. A. W. Bucks. Skin structure and metabolism:relevance to the design of cutaneous therapeutics.Pharm. Res. 1:148–153 (1984).PubMedCrossRefGoogle Scholar
  17. 17.
    W. W. Mapleson. An electric analogue for uptake and exchange of inert gases and other agents.J. Appl. Physiol. 18:197–204 (1963).PubMedGoogle Scholar
  18. 18.
    W. S. Spector (ed.).Handbook of Biological Data, W. B. Saunders, Philadelphia, 1956, p. 176.Google Scholar
  19. 19.
    J. M. Stevenson, H. I. Maibach, and R. H. Guy. In H. I. Maibach and N. J. Lowe (eds.),Models in Dermatology, Vol. 3, Karger, Basel, 1987, pp. 121–140.Google Scholar
  20. 20.
    W. J. Albery, R. H. Guy, and J. Hadgraft. Percutaneous absorption: Transport in the dermis.Int. J. Pharm. 15:125–148 (1983).CrossRefGoogle Scholar
  21. 21.
    A. T. Blei, S. Friedman, J. Gottstein, G. Robertson, and H-L. Fung. Pharmacokinetic-hemodynamic interactions between vasopressin and nitroglycerin: Comparison between intravenous and cutaneous routes of nitrate delivery.Hepatology 5:264–270 (1985).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Emi Nakashima
    • 1
  • Patrick K. Noonan
    • 1
  • Leslie Z. Benet
    • 1
  1. 1.Department of Pharmacy, School of PharmacyUniversity of CaliforniaSan Francisco

Personalised recommendations