Skip to main content
Log in

Genetic basis for remating inDrosophila melanogaster. IV. A chromosome substitution analysis

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Drosophila melanogaster lines previously selected for fast and slow return of female receptivity were subjected to a chromosome substitution analysis. Chromosomal effects on direct response to selection were distinctively different between selection lines derived from two different base populations. All three chromosomes tested affect the trait in the JEFFERS selection lines. In contrast, only chromosome II was found to have a main effect in the COMP selection lines. Significant interactions between chromosome II and the other chromosomes were also found in both of the selection lines. All of the components of virgin fly mating behavior measured were affected by chromosome II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauer, S. J., and Sokolowski, M. B. (1985). A genetic analysis of path length and pupation height in a natural population ofDrosophila melanogaster.Can. J. Genet. Cytol. 27:334–340.

    Google Scholar 

  • Cobb, M. K., Connolly, K. J., and Burnet, B. (1987). The relationship between locomotor activity and courtship in themelanogaster species sub-group ofDrosophila.Anim. Behav. 35:705–713.

    Google Scholar 

  • de Belle, J. S., Hilliker, A. J., and Sokolowski, M. B. (1989). Genetic localization offoraging (for): A major gene for larval behavior inDrosophila melanogaster.Genetics 123:157–163.

    Google Scholar 

  • Fisher, R. A. (1918). The correlation between relatives on the supposition of Mendelian inheritance.Trans. Roy. Soc. Edinburgh 52:399–433.

    Google Scholar 

  • Fukui, H. H., and Gromko, M. H. (1989). Female receptivity to remating and early fecundity inDrosophila melanogaster.Evolution 43:1311–1315.

    Google Scholar 

  • Gromko, M. H. (1987). Genetic constraint on the evolution of courtship behaviour inDrosophila melanogaster.Heredity 58:435–441.

    Google Scholar 

  • Gromko, M. H., and Newport, M. E. A. (1988a). Genetic basis for remating inDrosophila melanogaster. II. response to selection based on the behavior of one sex.Behav. Genet. 18:621–632.

    Google Scholar 

  • Gromko, M. H., and Newport, M. E. A. (1988b). Genetic basis for remating inDrosophila melanogaster. III. correlated responses to selection for female remating speed.Behav. Genet. 18:633–643.

    Google Scholar 

  • Hirsch, J., and Erlenmeyer-Kimling, L. (1962). Studies in experimental behavior genetics. IV. Chromosome analyses for geotaxis.J. Comp. Physiol. Psychol. 55:732–739.

    Google Scholar 

  • Hirsch, J., and Ksander, G. (1969). Studies in experimental behavior genetics. V. Negative geotaxis and further chromosome analyses inDrosophila melanogaster.J. Comp. Physiol. Psychol. 67:118–122.

    Google Scholar 

  • Hudak, M. J., and Gromko, M. H. (1989). Response to selection for early and late development of sexual maturity inDrosophila melanogaster.Anim. Behav. 38:344–351.

    Google Scholar 

  • Lukinbill, L. S., Graves, J. L., Reed, A. H., and Koetsawang, S. (1988). Localizing genes that differ senescence inDrosophila melanogaster.Heredity 60:367–374.

    Google Scholar 

  • Mather, K. (1942). The balance of polygenic combinations.J. Genet. 43:309–336.

    Google Scholar 

  • Mather, K., and Harrison, B. J. (1949). The manifold effects of selection.Heredity 3:1–52, 131–162.

    Google Scholar 

  • Newport, M. E. A., and Gromko, M. H. (1984). The effect of experimental design on female receptivity to remating and its impact on reproductive success inDrosophila melanogaster.Evolution 38:1261–1272.

    Google Scholar 

  • Pyle, D. W., (1978). A chromosome substitution analysis of geotactic maze behavior inDrosophila melanogaster.Behav. Genet. 8:53–64.

    Google Scholar 

  • Pyle, D. W., and Gromko, M. H. (1981). Genetic basis for repeated mating inDrosophila melanogaster.Am. Nat. 117:133–146.

    Google Scholar 

  • Ricker, J. P., and Hirsch, J. (1985). Evolution of an instinct under long-term divergent selection for geotaxis in domesticated populations ofDrosophila melanogaster.J. Comp. Psych. 99:380–390.

    Google Scholar 

  • Ricker, J. P., and Hirsch, J. (1988). Reversal of genetic homeostasis in laboratory populations ofDrosophila melanogaster under long-term selection for geotaxis and estimates of gene correlates: Evolution of behavior-genetic systems.J. Comp. Psych. 102:203–214.

    Google Scholar 

  • Robertson, F. W. (1954). Studies in quantitative inheritance. V. Chromosome analysis of crosses between selected and unselected lines of different body size inDrosophila melanogaster.J. Genet. 54:494–520.

    Google Scholar 

  • SAS Institute, Inc. (1985a).SAS User's Guide: Basics, 1985 ed., SAS Institute, Inc., Cary, N.C.

    Google Scholar 

  • SAS Institute, Inc. (1985b).SAS User's Guide: Statistics, 1985 ed., SAS Institute, Inc., Cary, N.C.

    Google Scholar 

  • Sokal, R. R., and Rohlf, F. J. (1981).Biometry: The Principles and Practice of Statistics in Biological Research, 2nd ed., W. H. Freeman, New York.

    Google Scholar 

  • Sokolowski, M. B. (1980). Foraging strategies ofDrosophila melanogaster: A chromosomal analysis.Behav. Genet. 10:291–302.

    Google Scholar 

  • Thoday, J. M. (1961). Location of polygenes.Nature 191:368–370.

    Google Scholar 

  • Thoday, J. M., and Thompson, J. N., Jr. (1976). The number of segregating genes implied by continuous variation.Genetica 46:335–344.

    Google Scholar 

  • Thompson, J. N., Jr. (1975). Quantitative variation and gene number.Nature 258:665–668.

    Google Scholar 

  • Thompson, J. N., Jr. (1977). Analysis of gene number and development in polygenic systems. InStadler Symp. Vol 9, University of Missouri, pp. 63–82.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by NSF Grant BNS 84-18934 and OBOR Selective Excellence Program for Academic Challenge and for Research Challenge to M.H.G.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukui, H.H., Gromko, M.H. Genetic basis for remating inDrosophila melanogaster. IV. A chromosome substitution analysis. Behav Genet 21, 169–182 (1991). https://doi.org/10.1007/BF01066334

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01066334

Key Words

Navigation