Journal of Quantitative Criminology

, Volume 6, Issue 3, pp 293–314 | Cite as

Estimating the size of criminal populations

  • D. Kim Rossmo
  • Rick Routledge


The estimation of total population size for various phenomena of crime is an important factor critical for criminal justice policy formulation and criminological theory development. In this paper, methods are discussed for estimating the size of a criminal population from police records. Capture-recapture analysis techniques, borrowed from the biological sciences, are used to predict the size of population for migrating (or fleeing) fugitives and for street prostitutes. Heterogeneity and behavioral responses to previous police encounters are identified as major complicating factors. The basic problem is that the police records are virtually unaffected by a potentially large pool of cryptic criminals. It is shown how independently collected auxiliary data can address this problem.

Key words

criminal population estimation capture-recapture analysis migrating/fleeing populations street prostitutes warrants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. American Unlawful Flight Laws, Chap. 49 Fugitives from Justice, 18U.S.C. s. 1073/1074.Google Scholar
  2. Biderman, A. D., and Reiss, A. J., Jr. (1967). On exploring the “dark figure” of crime.Ann. Am. Acad. Polit. Soc. Sci. 374: 1–15.Google Scholar
  3. Boswell, M. T., Burnham, K. P., and Patil, G. P. (1988). Role and use of composite sampling and capture-recapture sampling in ecological studies. In Krishnan, P. R., and Rao, C. R. (eds.),Handbook of Statistics 6: Sampling, North-Holland, Amsterdam, pp. 469–488.Google Scholar
  4. Bottomley, A. K., and Coleman, C. A. (1981).Understanding Crime Rates: Police and Public Roles in the Production of Official Statistics, Gower, Farnborough.Google Scholar
  5. Bottomley, A. K., and Pease, K. (1986).Crime and Punishment: Interpreting the Data, Open University Press, Milton Keynes.Google Scholar
  6. Brantingham, P. J., and Brantingham, P. L. (1984).Patterns in Crime, Macmillan, New York.Google Scholar
  7. Brownie, C., Anderson, D. R., Burnham, K. P., and Robson, D. S. (1978).Statistical Inference from Band Recovery Data—A Handbook, Resource Publication No. 131, Fish and Wildlife Service, U.S. Department of the Interior.Google Scholar
  8. Cox, D. R., and Hinkley, D. V. (1974).Theoretical Statistics, Chapman and Hall, LondonGoogle Scholar
  9. Cowan, C. D., and Malec, D. (1986). Capture-recapture models when both sources have clustered observations.J. Am. Stat. Assoc. 81: 347–353.Google Scholar
  10. Criminal Code, R.S.C. (1970). Chap. C-34, amended 1987, c.13.Google Scholar
  11. Dean, C., Lawless, J. F., and Willmot, G. E. (1989). A mixed Poisson-inverse-Gaussian regression model.Can. J. Stat. 17: 171–181.Google Scholar
  12. Feller, W. (1968).Introduction to Probability Theory and its Applications, Vol. 1, (3rd ed.), Wiley, New York.Google Scholar
  13. Greene, M. A. (1984). Estimating the size of a criminal population using an open population approach.Proceedings of the American Statistical Association, Survey Research Methods Section, pp. 8–13.Google Scholar
  14. Greene, M. A., and Stollmack, S. (1981). Estimating the number of criminals. In Fox, J. A. (ed.),Models in Quantitative Criminology, Academic Press, New York, pp. 1–24.Google Scholar
  15. Hutt v. The Queen (1978). 38 C.C.C. (2d) 418 (S.C.C.).Google Scholar
  16. Johnson, N. L., and Kotz, S. (1969).Distributions in Statistics: Discrete Distributions, Wiley, New York.Google Scholar
  17. Johnson, N. L., and Kotz, S. (1970).Distributions in Statistics: Continuous Distributions—1, Wiley, New York.Google Scholar
  18. Kremers, W. K. (1988). Estimation of survival rates from a mark-recapture study with tag loss.Biometrics 44: 117–130.Google Scholar
  19. Laplace, P. S. (1786). Sur les naissances, les mariages, et les morts.L'Histoire de l'Académie Royale des Sciences, Année 1783, Paris, p. 693.Google Scholar
  20. Lowman, J. (1984).Vancouver Field Study of Prostitution, Department of Justice, Ottawa, Ont.Google Scholar
  21. Lowman, J. (1989).Street Prostitution: Assessing the Impact of the Law, Vancouver, Department of Justice, Ottawa, Ont.Google Scholar
  22. Magid, S. (1974).Bail Reform Act Survey: Analysis, Statistics Canada, Ottawa, Ont.Google Scholar
  23. Mawby, R. I. (1981). Police practices and crime rates: A study of a British city. In Brantingham, P. J., and Brantingham, P. L. (eds.),Environmental Criminology, Sage, Beverly Hills, pp. 135–146.Google Scholar
  24. Newman, R. M., and Waters, T. F. (1989). Differences in brown trout (Salmo trutta) production among contiguous sections of an entire stream.Can. J. Fish. Aquat. Sci. 46: 203–213.Google Scholar
  25. Pepinsky, H. E. (1983).The meaning of police-recorded crime trends in Sheffield, Paper presented at the Annual Meeting of the American Society of Criminologists, Denver.Google Scholar
  26. Pollock, K. H., Moore, C. T., Davidson, W. R., Kellog, F. E., and Doster, G. L. (1989). Survival rates of bobwhite quail based on band recovery analyses.J. Wildl. Manage. 53: 1–6.Google Scholar
  27. Rossmo, D. K. (1987).Fugitive Migration Patterns, Unpublished master's thesis, Simon Fraser University, Burnaby, B.C.Google Scholar
  28. Sanathanan, L. (1973). A comparison of some models in visual scanning experiments.Technometrics 15: 67–78.Google Scholar
  29. Sanathanan, L. (1977). Estimating the size of a truncated sample.J. Am. Stat. Assoc. 72: 669–672.Google Scholar
  30. Seber, G. A. F. (1982).The Estimation of Animal Abundance and Related Parameters, 2nd ed., Charles Griffin, London.Google Scholar
  31. Shaban, S. A. (1981). Computation of the Poisson-inverse Gaussian distribution.Commun. Stat. Theory Meth. A10: 1389–1399.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • D. Kim Rossmo
    • 1
    • 2
  • Rick Routledge
    • 3
  1. 1.School of CriminologySimon Fraser UniversityBurnabyCanada
  2. 2.Vancouver Police DepartmentVancouverCanada
  3. 3.Department of Mathematics and Statistics and Department of Biological SciencesSimon Fraser UniversityBurnabyCanada

Personalised recommendations