Skip to main content
Log in

Formal analysis of the Cauchy problem for a system associated with the (2+1)-dimensional Krichever-Novikov equation

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

The singularity manifold equation of the Kadomtsev-Petviashvili equation, the so-called Krichever-Novikov equation, has an exact linearization to an overdetermined system of partial differential equations in three independent variables. We study in detail the Cauchy problem for this system as an example for the use of the formal theory of differential equations. A general existence and uniqueness theorem is established. Formal theory is then contrasted with Janet-Riquier theory in the formulation of Reid. Finally, the implications of the results for the Krichever-Novikov equation are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rogers, C., Oevel, W., and Vassiliou, P. J.: Invariance under reciprocal transformations in 1+1 and 2+1 dimensions, inProc. Int. Meeting on Nonlinear Diffusion Phenomena, Bangalore, 1992, Indian Institute of Science.

  2. RogersC., StallybrassM. P., and VassiliouP. J.: An invariance of the (2+1)-dimensional Harry-Dym equation: Application to an initial/boundary value problem,Internat. J. Nonlinear Mech. 29 (1994), 145–154.

    Google Scholar 

  3. RogersC.: The Harry-Dym equation in 2+1 dimensions: A reciprocal link with the Kadomtsev-Petviashvili equation,Phys. Lett. A 120 (1987), 15–18.

    Google Scholar 

  4. OevelW. and RogersC.: Gauge transformations and reciprocal links in 2+1 dimensions,Rev. Math. Phys. 5 (1993), 299–330.

    Google Scholar 

  5. KonopelchenkoB. G. and DubrovskyV. G.: Some new integrable nonlinear evolution equations in 2+1 dimensions,Phys. Lett. A 102 (1981), 15–17.

    Google Scholar 

  6. RogersC., StallybrassM. P., and SchiefW. K.: Initial/boundary value problems and Darboux-Levi type transformations associated with a (2+1)-dimensional eigenfunction equation,Internat. J. Nonlinear Mech. 30 (1995), 223–233.

    Google Scholar 

  7. PommaretJ. F.:Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach, London, 1978.

    Google Scholar 

  8. SeilerW. M.: On the arbitrariness of the general solution of an involutive partial differential equation,J. Math. Phys. 35 (1994), 486–498.

    Google Scholar 

  9. JanetM., Sur les systèmes d'équations aux dérivées partielles,J. Math. Pure Appl. 3 (1920), 65–151.

    Google Scholar 

  10. RiquierC.:Les systèmes d'équations aux derivées partielles, Gauthier-Villars, Paris, 1910.

    Google Scholar 

  11. Seiler, W. M.: Generalized tableaux and formally well-posed initial value problems, Preprint, Lancaster University, 1995.

  12. SaundersD. J.:The Geometry of Jet Bundles, London Math. Soc. Lecture Notes Series 142, Cambridge University Press, Cambridge, 1989.

    Google Scholar 

  13. Seiler, W. M.: Analysis and application of the formal theory of partial differential equations, PhD Thesis, School of Physics and Materials, Lancaster University, 1994.

  14. SchüJ., SeilerW. M., and CalmetJ.: Algorithmic methods for Lie pseudogroups, in N.Ibragimov, M.Torrisi, and A.Valenti (eds),Proc. Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics, Acireale (Italy), 1992, Kluwer, Dordrecht, 1993, pp. 337–344.

    Google Scholar 

  15. Seiler, W. M.: Applying AXIOM to partial differential equations, Internal Report 95-17, Fakultät für Informatik, Universität Karlsruhe, 1995.

  16. goldschmidtH. L.: Integrability criteria for systems of nonlinear partial differential equations,J. Differential Geom. 1 (1969), 269–307.

    Google Scholar 

  17. ReidG. J.: Algorithms for reducing a system of PDEs to standard form, determining the dimension of its solution space and calculating its Taylor series solution,Eur. J. Appl. Math. 2 (1991), 293–318.

    Google Scholar 

  18. ThomasJ. M.: Riquier's existence theorems,Ann. Math. 30 (1929), 285–321.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seiler, W.M., Vassiliou, P.J. & Rogers, C. Formal analysis of the Cauchy problem for a system associated with the (2+1)-dimensional Krichever-Novikov equation. Acta Appl Math 42, 249–265 (1996). https://doi.org/10.1007/BF01064168

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01064168

Mathematics Subject Classifications (1991)

Key words

Navigation