Skip to main content
Log in

An experimental model for pharmacokinetic analysis in renal failure

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

A renal failure model was developed in the dog to evaluate the effect of varying degrees of renal failure on drug pharmacokinetics. A controlled impairment of renal function was induced by electrocoagulating portions of one kidney and excising the contralateral kidney. The magnitude of renal dysfunction, defined by the percentage of normal glomerular filtration rate (% NGFR), was estimated by 125 I-iothalamate total body clearance. The model was evaluated by comparing the pharmacokinetics of oxytetracycline (OTC) before and after the induction of renal failure in two experiments: single intraveneous dose (11dogs); single intravenous and oral doses (8dogs). Renal failure (RF) was studied in three classes according to % NGFR: <25%,severe RF; 25–39%,moderate RF; and ≥ 40%,mild RF. Significant reductions were observed over RF class in OTC pharmacokinetic parameters for elimination and distribution but not for oral absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Fahre and L. Balant, Renal failure, drug pharmacokinetics and drug action.Clin. Pharmacokin. 1:99–120 (1976).

    Article  Google Scholar 

  2. P. G. Welling and W. A. Craig. In L. Z. Benet (ed.),The Effect of Disease States on Drug Pharmacokinetics, American Pharmaceutical Association, Washington, DC, 1976, chap. 10, pp. 155–187.

    Google Scholar 

  3. J. G. Gambertoglio. Effects of renal disease: Altered pharmacokinetics. In L. Z. Benet, N. Massoud, and J. G. Gambertoglio (eds.),Pharmacokinetic Basis of Drug Treatment, Raven Press, New York, 1984, pp. 149–171.

    Google Scholar 

  4. C. Nancarrow and L. E. Mather. Pharmacokinetics in renal failure.Anaesth. Intensive Care 11:350–360 (1983).

    CAS  PubMed  Google Scholar 

  5. R. J. Anderson. Drug prescribing for patients in renal failure.Hosp. Practice 18:145–160 (1983).

    CAS  Google Scholar 

  6. A. Kamiya, K. Okumura, and R. Hori. Quantitative investigation of renal handling of drugs in dogs with renal insufficiency.J. Pharm. Sci. 73:892–895 (1983).

    Article  Google Scholar 

  7. K. Giacomini, S. M. Roberts, and G. Levy. Evaluation of methods for producing renal dysfunction in rats.J. Pharm. Sci. 70:117–120 (1981).

    Article  CAS  PubMed  Google Scholar 

  8. J. Moravek, O. Schuck, M. Hatala, and J. Priborsky. Preclinical modeling of changes in drug kinetics caused by acute renal failure in rats.J. Pharmacokin. Biopharm. 15:15–23 (1986).

    Article  Google Scholar 

  9. J. C. Nesbitt, W. S. McDougal, W. Lowe, N. N. Abumrad, and W. A. Nylander. A new model to study acute and chronic renal failure.Am. Surgeon 52:651–653 (1986).

    CAS  PubMed  Google Scholar 

  10. J. E. Riviere, G. L. Coppoc, E. J. Hinsman, and W. W. Carlton. Gentamicin pharmacokinetic changes in induced acute canine nephrotoxic glomerulonephritis.Antimicrobial Agents Chemother. 20:387–392 (1981).

    Article  CAS  Google Scholar 

  11. K. Shirota, and K. Fujiwara. Nephropathy in dogs induced by treatment with antiserum against renal basement membrane.Nippon Juigaki Zasshi 44:767–776 (1982).

    Article  CAS  Google Scholar 

  12. D. C. Dobyan, R. E. Cronin, and R. E. Bulger. Effect of potassium depletion on tubular morphology in gentamicin-induced acute renal failure in dogs.Lab. Invest. 47:586–694 (1982).

    CAS  PubMed  Google Scholar 

  13. R. W. Schrier, R. E. Cronin, P. Miller, A. deTorrente, T. Burke, and R. Bulger. Role of solute excretion in prevention of norepinephrine-induced acute renal failure.Yale J. Biol. Med. 51:355–359 (1978).

    CAS  PubMed Central  PubMed  Google Scholar 

  14. P. Balint. Pathogenesis of mercuric chloride induced renal failure in the dog.Acta Med. Acad. Sci. Hung. 25:287–297 (1968).

    Article  CAS  PubMed  Google Scholar 

  15. E. Szocs, T. Zahayszky, J. Juszbo, and P. Balint. Intrarenal haemodynamics in uranyl nitrate-induced acute renal failure.Acta Physiol. Acad. Sci. Hung. 54:51–68 (1980).

    Google Scholar 

  16. R. C. Van Holder, M. M. Praet, P. A. Pattyn, I. R. Leusen, and N. K. Lameire. Dissociation of glomerular filtration and renal blood flow in HgCl2-induced renal impairment.Kidney Int. 22:162–170 (1982).

    Article  Google Scholar 

  17. W. F. Finn and R. L. Chevalier. Recovery from postischemic acute renal failure in the rat.Kidney Int. 16:113–123 (1979).

    Article  CAS  PubMed  Google Scholar 

  18. J. Boudet, N. K. Man, P. Pils, A. Sausse, and J. L. Funck-Bretano. Experimental renal failure in the rat by electrocoagulation of the renal cortex.Kidney Int. 14:82–86 (1978).

    Article  CAS  PubMed  Google Scholar 

  19. R. F. Gagnon and W. P. Duguid. A reproductive model for chronic renal failure in the mouse.Urol. Res. 11:11–14 (1983).

    Article  CAS  PubMed  Google Scholar 

  20. V. D. Bass. Absorption, distribution and excretion of oxytetracycline in female beagles. Doctoral dissertation, University of Illinois, 1983.

  21. H. J. Eisner and R. J. Wulf. The metabolic fate of chlortetracycline and some comparisons in other tetracyclines.J. Pharmacol. Exp. Ther. 142:122–131 (1963).

    CAS  PubMed  Google Scholar 

  22. R. G. Kelly, and D. A. Buyshke. Metabolism of tetracycline in the rat and the dog.J. Pharmacol Exp. Ther. 130:144–149 (1960).

    CAS  PubMed  Google Scholar 

  23. C. M. Kunin, A. Dornbush, and M. Finland. Distribution and excretion of four tetracycline analogues in normal young men.J. Clin. Invest. 38:1950–1963 (1959).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. H. J. Nelis and A. P. De Leenheer. Evidence for metabolic inertness of doxycycline.J. Pharm. Sci. 70:226–228 (1981).

    Article  CAS  PubMed  Google Scholar 

  25. A. L. Aronson. Pharmacotherapeutics of the newer tetracyclines.J. Am. Vet. Med. Assoc. 176:1061–1068 (1980).

    CAS  PubMed  Google Scholar 

  26. F. Fabre, E. Milek, P. Kalfopoulous, and G. Mérier. The kinetics of tetracyclines in man: II. Excretion, penetration in normal and inflammatory tissues, behavior in renal insufficiency and hemodialysis.Schweiz. Med. Wochschr. 101:625–633 (1971).

    CAS  Google Scholar 

  27. M. Shach von Wittenau and R. Yeary. The excretion and distribution in body fluids of tetracyclines after intravenous administration to dogs.J. Pharmacol. Exp. Ther. 140:258–266 (1963).

    Google Scholar 

  28. A. Whelton. Tetracyclines in renal insufficiency: Resolution of a therapeutic dilemma.Bull. NY Acad. Med. 54:223–236 (1978).

    CAS  Google Scholar 

  29. A. Bricker. On the meaning of the Intact Nephron Hypothesis.Am. J. Med. 46(1):1–10 (1969).

    Article  CAS  PubMed  Google Scholar 

  30. J. Hall, A. Guyton, and B. Farr. A single-injection method for measuring glomerular filtration rate.Am. J. Physiol. 232:F72-F76 (1977).

    CAS  PubMed  Google Scholar 

  31. T. Powers, J. Powers, and R. Garg. Study of the double isotope method for estimating renal function in purebred Beagle dogs.Am. J. Vet. Res. 28:1933–1936 (1977).

    Google Scholar 

  32. M. Gibaldi and D. Perrier.Pharmacokinetics. Drugs and the Pharmaceutical Sciences, Vol. 15. Marcel Dekker, New York, 1982.

    Google Scholar 

  33. M. Berman and M. F. Weiss.Users Manual for Simulation, Analysis and Modeling, National Institute of Arthritis and Metabolic Diseases, National Institutes of Health, Bethesda, MD, 1977.

    Google Scholar 

  34. J. P. Sharma and R. F. Bevill. Improved HPLC for the determination of tetracyclines in plasma, urine and tissues.J. Chromatog. 166:213–220 (1978).

    Article  CAS  Google Scholar 

  35. K. Yamoaka, T. Nakagawa, and T. Uno. Application of Akaike's Information Criterion (AIC) in the evaluation of linear pharmacokinetic equations.J. Pharmacokin. Biopharm. 6:165–175 (1978).

    Article  Google Scholar 

  36. J. G. Wagner.Fundamentals of Clinical Pharmacokinetics., 2nd ed., Illinois Drug Intelligence Publ., Hamilton, IL, 1979.

    Google Scholar 

  37. B. J. Winer.Statistical Principles in Experimental Design, 2nd ed., McGraw Hill, New York, 1971.

    Google Scholar 

  38. C. A. Gloff and L. Z. Benet. Differential effects of the degree of renal damage onp-aminohippuric acid and inulin clearances in rats.J. Pharmacokin. Biopharm. 17:169–177 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duffee, N.E., Bevill, R.F., Koritz, G.D. et al. An experimental model for pharmacokinetic analysis in renal failure. Journal of Pharmacokinetics and Biopharmaceutics 18, 71–86 (1990). https://doi.org/10.1007/BF01063622

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01063622

Key words

Navigation