Skip to main content
Log in

Estimation of renal secretory function for organic cations by endogenous N1-methylnicotinamide in rats with experimental renal failure

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

To assess whether the secretory clearance of N 1-methylnicotinamide (NMN), an endogenous organic cation, represents renal tubular secretion of the organic cation, the relationship between the secretory clearance of NMN, CL scn(NMN),and that of tetraethylammonium bromide (TEA), CL scn(TEA),was examined in normal and experimental renal failure (ERF) rats. TEA was selected as a representative organic cation secreted by the kidney. ERF was induced by glycerol, folate, salicylate, uranium, and gentamicin, substances which have been demonstrated to produce specific damage to the kidney by pathophysiological studies. Glomerular filtration rate (GFR), CL scn(NMN),and CL scn(TEA) decreased significantly in most of ERF rats, while blood urea nitrogen (BUN) increased significantly in all ERF rats. There was a statistically significant correlation (r=0.952, p<0.001) between the endogenous CL scn(NMN) and CL scn(TEA) in both the normal and ERF rats. Correlation analysis revealed that CL scn(NMN) was superior to GFR in the degree of relationship to CL scn(TEA),but BUN could not be used as an index for the secretion of NMN or TEA. Although the plasma concentration of NMN in most of the ERF rats was much higher than that in the normal rats, it affected neither the urinary clearance of NMN itself nor the excretion of TEA. From these findings, we propose that CL scn(NMN) can be used as an index to assess renal tubular function for the secretion of organic cations that are excreted by both filtration and secretion without reabsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Dettli. Drug dosage in renal disease.Clin. Pharmacokin. 1:126–134 (1976).

    Article  CAS  Google Scholar 

  2. W. L. Chiou and F. H. Hsu. Pharmacokinetics of creatinine in man and its implications in the monitoring of renal function in dosage regimen modifications in patients with renal insufficiency.J. Clin. Invest. 15:427–434 (1975).

    CAS  Google Scholar 

  3. H. Halkin, L. B. Sheiner, C. C. Peck, and K. L. Melmon. Determination of the renal clearance of digoxin.Clin. Pharmacol. Ther. 17:385–394 (1975).

    CAS  PubMed  Google Scholar 

  4. H. W. Smith, N. Finkelstein, L. Aliminosa, B. Crawford, and M. Graber. The renal clearances of substituted hippuric acid derivatives and other aromatic acids in dog and man.J. Clin. Invest. 24:388–404 (1945).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. S. Miwa, S. Tojo, H. Obata, M. Narita, T. Tsuchiya, and K. Hirose. Renal failure and its clinical aspects.Saishin Igaku 14:1797–1807 (1959).

    Google Scholar 

  6. J. P. Kassirer. Clinical evaluation of kidney function: glomerular function.N. Engl. J. Med. 285:385–389 (1971).

    Article  CAS  PubMed  Google Scholar 

  7. D. B. Morgan, M. E. Carver, and R. B. Payne. Plasma creatinine and urea: creatinine ratio in patients with raised plasma urea.Br. Med. J. 2:929–932 (1977).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. W. H. Cargill. The measurement of glomerular and tubular plasma flow in the normal and diseased human kidney.J. Clin. Invest. 28:533–538 (1949).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. A. Farah and B. Rennick. Studies on the renal tubular transport of tetraethylammonium ion in renal slices of the dog.J. Pharmacol. Exp. Ther. 117:478–487 (1956).

    CAS  PubMed  Google Scholar 

  10. B. R. Rennick, D. M. Calhoon, H. Gandia, and G. K. Moe. Renal tubular secretion of tetraethylammonium in the dog and the chicken.J. Pharmacol. Exp. Ther. 110:309–314 (1954).

    CAS  PubMed  Google Scholar 

  11. B. R. Rennick and A. Farah. Studies on the renal tubule transport of TEA ion in the dog.J. Pharmacol. Exp. Ther. 116:287–295 (1956).

    CAS  PubMed  Google Scholar 

  12. B. R. Rennick. Renal tubule transport of organic cations.Am. J. Physiol. 240:F83-F89 (1981).

    CAS  PubMed  Google Scholar 

  13. C. R. Ross and A. Farah.p-Aminohippurate and N1-methylnicotinamide transport hypothesis.J. Pharmacol. Exp. Ther. 151:159–167 (1966).

    CAS  PubMed  Google Scholar 

  14. C. R. Ross, N. I. Pessah, and A. Farah. Studies on the uptake and runout ofp-aminohippurate and N1-methylnicotinamide in dog renal slices.J. Pharmacol. Exp. Ther. 160:381–386 (1968).

    CAS  PubMed  Google Scholar 

  15. J. W. Huff and W. A. Perzwig. N1-methylnicotinamide, a metabolite of nicotinic acid in the urine.J. Biol. Chem. 150:395–400 (1943).

    CAS  Google Scholar 

  16. B. C. Johnson, T. S. Hamilton, and H. H. Mitchel. The excretion of nicotinic acid, nicotinamide, nicotinuric acid, and N1-methylnicotinamide by normal individuals.J. Biol. Chem. 159:231–236 (1945).

    CAS  Google Scholar 

  17. K. H. Beyer, H. F. Russo, S. R. Gass, K. M. Wilhoyte, and A. A. Pitt. Renal tubular elimination of NMN.Am. J. Physiol. 160:311–320 (1950).

    CAS  PubMed  Google Scholar 

  18. R. E. Green, W. E. Ricker, W. L. Attwood, Y. S. Koh, and L. Peters. Studies of the renal tubular transport characteristics of N1-methylnicotinamide and tetraethylammonium compounds in the avian kidney.J. Pharmacol. Exp. Ther. 126:195–201 (1959).

    CAS  PubMed  Google Scholar 

  19. B. R. Rennick, A. Kandel, and L. Peters. Inhibition of the renal tubular excretion of tetraethylammonium and N1-methylnicotinamide by basic cyanine dyes.J. Pharmacol. Exp. Ther. 118:204–219 (1956).

    CAS  PubMed  Google Scholar 

  20. C. R. Ross, F. Diezi-Chomety, and F. Roch-Ramel. Renal excretion of N1-methylnicotinamide in the rat.Am. J. Physiol. 228:1641–1645 (1975).

    CAS  PubMed  Google Scholar 

  21. K. Besseghir, B. Pearce, and B. Rennick. Renal tubular transport and metabolism of organic cations by rabbits.Am. J. Physiol. 240:F308-F314 (1981).

    Google Scholar 

  22. A. Kandel and L. Peters. Observations concerning the renal tubular transport characteristics of three quarternary bases in dogs.J. Pharmacol. Exp. Ther. 119:550–558 (1957).

    CAS  PubMed  Google Scholar 

  23. L. Peters, K. J. Fenton, M. L. Wolf, and A. Kandel. Inhibition of the renal tubular excretion of N1-methylnicotinamide (NMN) by small doses of a basic cyanine dye.J. Pharmacol. Exp. Ther. 113:148–159 (1955).

    CAS  PubMed  Google Scholar 

  24. L. Peters. Renal tubular excretion of organic bases.Pharmacol. Rev. 12:1–35 (1960).

    CAS  PubMed  Google Scholar 

  25. M. Mintum, K. H. Himmelstein, R. L. Schroder, M. Gibaldi, and D. D. Shen. Tissue distribution kinetics of tetraethylammonium ion in the rat.J. Pharmacokin. Biopharm. 8:373–409 (1980).

    Article  Google Scholar 

  26. H. G. Preuss. Tubular function in experimental acute tubular necrosis in rats.Kid. Int. 10:S51-S57 (1976).

    Google Scholar 

  27. C. Westenfelder, G. J. Arevalo, P. W. Crawford, P. Zerwer, R. L. Baranowski, F. M. Birch, W. R. Earnest, R. K. Hamburger, R. D. Colemen, and N. A. Kurtzman. Renal tubular function in glycerol-induced acute renal failure.Kid. Int. 18:432–444 (1980).

    Article  CAS  Google Scholar 

  28. H. G. Preuss, F. R. Weiss, R. H. Janicki, and H. Goldin. Studies on the mechanism of folate-induced growth in rat kidneys.J. Pharmacol. Exp. Ther. 180:754–758 (1972).

    CAS  PubMed  Google Scholar 

  29. U. Schmidt, J. Torhorst, M. Huguenin, and U. C. Dubach. Acute renal failure after folate: Na+, K+-ATPase in isolated rat renal tubule. Ultramicrochemical and clinical studies.Eur. J. Clin. Invest. 3:169–178 (1973).

    Article  CAS  PubMed  Google Scholar 

  30. G. E. Schubert. Folic acid induced acute renal failure in the rat: morphologic studies.Kid. Int. 10:S46-S50 (1976).

    Article  Google Scholar 

  31. I. C. Calder, C. C. Funder, C. R. Green, K. N. Ham, and J. D. Tange. Comparative nephrotoxicity of aspirin and phenacetin derivatives.Br. Med. J. 4:518–521 (1971).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. R. C. Blantz and K. Konnen. The mechanism of acute renal failure after uranyl nitrate.J. Clin. Invest. 55:621–635 (1975).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. F. A. Carone and W. G. Spector. The suppression of experimental protein-uria in the rat by compounds that inhibit increased capillary permeability.J. Pathol. Bacteriol. 80:55–62 (1960).

    Article  CAS  PubMed  Google Scholar 

  34. D. G. Houghton, M. Hartnett, M. C. Boswell, G. Porter, and W. Bennett. A light microscopic analysis of gentamicin nephrotoxicity in rats.Am. J. Pathol. 82:589–599 (1976).

    CAS  PubMed Central  PubMed  Google Scholar 

  35. U. C. Kosek, R. I. Mazze, and M. J. Cousins. Nephrotoxicity of gentamicin.Lab. Invest. 30:48–57 (1974).

    CAS  PubMed  Google Scholar 

  36. F. C. Luft, G. R. Aronoff, A. P. Evan, B. A. Connors, M. H. Weinberger, and S. A. Kleit. The renin-angiotensin system in aminoglycoside-induced acute renal failure.J. Pharmacol. Exp. Ther. 220:433–439 (1982).

    CAS  PubMed  Google Scholar 

  37. B. R. Clark, R. M. Halpern, and R. A. Smith. A fluorimetric method for quantitation in the picomole range of N1-methylnicotinamide and nicotinamide in serum.Anal. Biochem. 68:54–61 (1975).

    Article  CAS  PubMed  Google Scholar 

  38. J. K. Fawcett and J. E. Scott. A rapid and precise method for the determination of urea.J. Clin. Pathol. 13:156–159 (1960).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. R. L. Searcy and F. M. Cox. A modified technique for ultramicro estimations of urea nitrogen.Clin. Chim. Acta 8:810–812 (1963).

    Article  CAS  PubMed  Google Scholar 

  40. S. Reitman and S. Frankel. A colorimetric method for the determination of serum glutamic pyruvic transaminases.Am. J. Clin. Pathol. 28:56–63 (1957).

    CAS  PubMed  Google Scholar 

  41. H. G. Preuss. Tubular function in experimental acute tubular necrosis in rats.Kid. Int. 10:S51-S57 (1976).

    Google Scholar 

  42. C. Westenfelder, G. J. Arevalo, P. W. Crawford, P. Zerwer, R. L. Baranowski, F. M. Birch, W. R. Earnest, R. K. Hamburger, R. D. Coleman, and N. A. Kurtzman. Renal tubular function in glycerol-induced acute renal failure.Kid. Int. 18:432–444 (1980).

    Article  CAS  Google Scholar 

  43. F. C. Luft, G. R. Aronoff, A. P. Evan, B. A. Connors, M. H. Weinberger, and S. A. Kleit. The renin-antigiotensin system in aminoglycoside-induced acute renal failure.J. Pharmacol. Exp. Ther. 220:433–439 (1982).

    CAS  PubMed  Google Scholar 

  44. J. C. Kosek, R. I. Mazze, and M. J. Cousins. Nephrotoxicity of gentamicin.Lab. Invest. 30:48–57 (1974).

    CAS  PubMed  Google Scholar 

  45. D. G. Houghton, M. Hartnett, M. C. Boswell, G. Porter, and W. Bennett. A light microscopic analysis of gentamicin nephrotoxicity in rats.Am. J. Pathol. 82:589–599 (1976).

    CAS  PubMed Central  PubMed  Google Scholar 

  46. U. Schmidt, J. Torhorst, M. Huguenin, and U. C. Dubach. Acute renal failure after folate: Na+, K+-ATPase in isolated rat renal tubule. Ultramicrochemical and clinical studies.Eur. J. Clin. Invest. 3:169–178 (1973).

    Article  CAS  PubMed  Google Scholar 

  47. G. E. Schubert. Folic acid-induced acute renal failure in the rat: Morphologic studies.Kid. Int. 10:S46-S50 (1976).

    Article  Google Scholar 

  48. H. G. Peuss, F. R. Weiss, R. H. Janicki, and H. Goldin. Studies on the mechanism of folate-induced growth in rat kidneys.J. Pharmacol. Exp. Ther. 180:754–758 (1972).

    Google Scholar 

  49. F. A. Carone and W. G. Spector. The suppression of experimental protein-uria in the rat by compounds that inhibit increased capillary permeability.J. Pathol. Bacteriol. 80:55–62 (1960).

    Article  CAS  PubMed  Google Scholar 

  50. R. C. Blantz and K. Konnen. The mechanism of acute renal failure after uranyl nitrate.J. Clin. Invest. 55:621–635 (1975).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. I. C. Calder, C. C. Funder, C. R. Green, K. N. Ham and J. D. Tange. Comparative nephrotoxicity of aspirin and phenacetin derivatives.Br. Med. J. 4:518–521 (1971).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. A. Farah, B. R. Rennick, and M. Frazer. The influence of some basic substances on the transport of tetraethylammonium ion.J. Pharmacol. Exp. Ther. 119:123–127 (1957).

    Google Scholar 

  53. P. D. Holohan and C. R. Ross. Mechanisms of organic cation transport in kidney plasma membrane vesicles: 2.pH studies.J. Pharmacol. Exp. Ther. 216:294–298 (1981).

    CAS  PubMed  Google Scholar 

  54. B. Rennick, G. K. Moe, R. H. Lyons, S. W. Hoobler, and R. J. Neligh. Absorption and renal excretion of the tetraethylammonium ion.J. Pharmacol. Exp. Ther. 91:210–217 (1947).

    CAS  PubMed  Google Scholar 

  55. C. K. Shim, Y. Sawada, T. Iga, and M. Hanano. Effect of experimental acute renal failure on intrinsic renal tubular secretory clearance of organic cations in rats.J. Pharm. Dyn. 6:787–789 (1983).

    Article  CAS  Google Scholar 

  56. J. L. McNay, S. Rosello, and P. G. Dayton. Effects of azotemia on renal extraction and clearance of PAH and TEA.Am. J. Physiol. 230:901–906 (1976).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Abstracted in part from a dissertation submitted by Chang K. Shim to the Graduate School, Division of Pharmaceutical Sciences, University of Tokyo, in partial fulfilment of the Doctor of Philosophy degree requirements. This study was supported by a grant-in-aid for Scientific Research provided by the Ministry of Education, Science and Culture of Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shim, C.K., Sawada, Y., Iga, T. et al. Estimation of renal secretory function for organic cations by endogenous N1-methylnicotinamide in rats with experimental renal failure. Journal of Pharmacokinetics and Biopharmaceutics 12, 23–42 (1984). https://doi.org/10.1007/BF01063609

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01063609

Key words

Navigation