Skip to main content
Log in

Neuronal organization of fast- and slow-conducting components of the pyramidal system

  • Surveys
  • Published:
Neurophysiology Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. N. V. Bulgakova, A. I. Pilyavskii, and V. A. Maiskii, "Distribution of pyramidal fibers in the cat spinal cord," Neirofiziologiya,10, 525 (1978).

    Google Scholar 

  2. D. A. Vasilenko and P. G. Kostyuk, "Phasic and tonic components of pyramidal influences on motoneurons," Dokl. Akad. Nauk SSSR,169, 731 (1966).

    Google Scholar 

  3. D. A. Vasilenko and P. G. Kostyuk, "Functional properties of interneurons activated monosynaptically by the pyramidal tract," Zh. Vyssh. Nervn. Deyat.,14, 1046 (1966).

    Google Scholar 

  4. A. P. Gokin, N. N. Preobrazhenskii, and A. V. Shapovalov, "Investigation of the functional characteristics of reticulospinal fibers of the ventral funiculus," Neirofiziologiya,6, 135 (1974).

    Google Scholar 

  5. O. A. Karamyan, "Effect of stimulation of mesencephalic structures on spinal motoneurons," Zh. Evol. Biokhim. Fiziol.,4, 509 (1968).

    Google Scholar 

  6. P. G. Kostyuk, Structure and Function of Descending Systems of the Spinal Cord [in Russian], Nauka, Leningrad (1973), 279 pp.

    Google Scholar 

  7. P. G. Kostyuk, M. A. Kulikov, B. Ya. Pyatigorskii, and D. A. Vasilenko, "Analysis of spontaneous unit activity in the cat pyramidal tract," Neirofiziologiya,4, 3 (1972).

    Google Scholar 

  8. Ya. M. Kots, Organization of Voluntary Movement [in Russian], Nauka, Moscow (1975), 248 pp.

    Google Scholar 

  9. V. A. Maiskii and L. A. Savos'kina, "Distribution and ultrastructure of pyramidal tract endings in the cat rhombencephalon," Neirofiziologiya,6, 367 (1974).

    Google Scholar 

  10. A. I. Pilyavskii, "Corticofugal influences on reticulospinal neurons of the gigantocellular nucleus in cats," Neirofiziologiya,8, 250 (1976).

    Google Scholar 

  11. A. I. Pilyavskii, "Organization of cortico-reticulospinal connections in cats," Neirofiziologiya,8, 366 (1976).

    Google Scholar 

  12. A. I. Pilyavskii, S. N. Gribov, and A. P. Gokin, "Character of activation of medullary reticulospinal neurons by collaterals of pyramidal fibers," Neirofiziologiya,9, 495 (1977).

    Google Scholar 

  13. V. V. Fanardzhyan, On the Neuronal Organization of Cerebellar Efferent Systems [in Russian], Nauka, Leningrad (1975), 74 pp.

    Google Scholar 

  14. G. I. Allen and N. Tsukahara, "Cerebrocerebellar communication systems," Physiol. Rev.,54, 957 (1974).

    Google Scholar 

  15. G. I. Allen, H. Korn, and T. Oshima, "Monosynaptic pyramidal activation of pontine nuclear cells projecting to the cerebellum," Brain Res.,15, 272 (1969).

    Google Scholar 

  16. G. I. Allen, T. Oshima, and K. Toyama, "Unitary components in corticopontine activation of the cat," Brain Res.,35, 245 (1971).

    Google Scholar 

  17. P. Anderson, J. C. Eccles, and T. A. Sears, "Presynaptic inhibitory action of cerebral cortex on the spinal cord," Nature,194, 740 (1962).

    Google Scholar 

  18. P. Anderson, J. C. Eccles, and R. F. Schmidt, "Presynaptic inhibition in the cuneate nucleus," Nature,194, 741 (1962).

    Google Scholar 

  19. C. Andrews, L. Knowles, and J. W. Lance, "Corticoreticulospinal control of the tonic vibration reflex in the cat," J. Neurol. Sci.,18, 207 (1973).

    Google Scholar 

  20. T. Araki and K. Endo, "Short latency EPSPs of pyramidal tract cells evoked by stimulation of the centrum medianum parafasciculus complex and the nucleus centralis anterior of the thalamus," Brain Res.,113, 405 (1976).

    Google Scholar 

  21. T. Araki, K. Endo, Y. Kawai, K. Ito, and Y. Shigenaga, "Supraspinal control of slow and fast spinal motoneurons of the cat," Prog. Brain Res.,44, 413 (1976).

    Google Scholar 

  22. H. Asanuma, S. D. Stoney, and C. Abzug, "Relationship between afferent input and motor outflow in cat motor-sensory cortex," J. Neurophysiol.,31, 670 (1968).

    Google Scholar 

  23. G. A. Bishop, R. A. McCrea, and S. T. Kitai, "A horseradish peroxidase study of the cortico-olivary projection in the cat," Brain Res.,116, 306 (1976).

    Google Scholar 

  24. S. Blomfield and D. Marr, "How the cerebellum may be used," Nature,227, 1224 (1970).

    Google Scholar 

  25. B. Blum, "Microphysiological characterization of output channels and of impulse propagation from the sensomotor cortex. Including through pyramidal tract collaterals to the center median nucleus of the cat and of the monkey," Int. J. Nuerol.,3, 178 (1971).

    Google Scholar 

  26. N. Boisacg-Schepens and M. Hanus, "Motor cortex vestibular responses in the chloralosed cat," Exp. Brain Res.,14, 539 (1972).

    Google Scholar 

  27. J. Brech, G. Gordon, and T. P. S. Powell, "Corticofugal cells responding antidromically to stimulation of the cuneate and gracile nuclei of the cat," Brain Res.,138, 39 (1977).

    Google Scholar 

  28. P. Brodal, "The corticopontine projection in the cat. Demonstration of a somatotopically organized projection from the primary sensomotor cortex," Exp. Brain Res.,5, 210 (1968).

    Google Scholar 

  29. P. Brodal, J. Marsala, and A. Brodal, "The cerebral cortical projection to the lateral reticular nucleus in the cat with special reference to the sensomotor cortical area," Brain Res.,6, 252 (1967).

    Google Scholar 

  30. A. Brodal, F. Walberg, and O. Pompeiano, The Vestibular Nuclei and Their Connections. Anatomical, Functional Correlations, C. C. Thomas, Springfield, Ill. (1962).

    Google Scholar 

  31. J. M. Brookhart, "A study of corticospinal activation of motor neurones," Res. Publ. Assoc. Res. Nerv. Ment. Dis.,30, 157 (1972).

    Google Scholar 

  32. N. A. Buchwald, D. D. Price, L. Vernon, and C. D. Hull, "Caudate intracellular response to thalamus and cortical inputs," Exp. Neurol.,38, 311 (1973).

    Google Scholar 

  33. W. H. Calvin and G. W. Sypert, "Fast and slow pyramidal neurons: an intracellular analysis of their contrasting repetitive firing properties in the cat," J. Neurophysiol.,39, 420 (1976).

    Google Scholar 

  34. D. Carpenter, A. Lundberg, and U. Norsell, "Effects from the pyramidal tract on primary afferents and spinal reflex actions to primary afferents," Experientia,18, 337 (1962).

    Google Scholar 

  35. M. H. Clarke, W. M. Landau, and G. H. Bishop, "Electrophysiological evidence of a collateral pathway from pyramidal tract to the thalamus in the cat," Exp. Neurol.,9, 262 (1964).

    Google Scholar 

  36. J. D. Coulter, L. Ewing, and C. Carter, "Origin of primary sensomotor projection to lumbar spinal cord of the cat and monkey," Brain Res.,103, 366 (1976).

    Google Scholar 

  37. L. N. Dyachkova, P. G. Kostyuk, and N. Ch. Pogorelaya, "An electron-microscopic analysis of pyramidal tract terminations in the spinal cord of the cat," Exp. Brain Res.,12, 105 (1971).

    Google Scholar 

  38. J. C. Eccles, R. A. Nicoll, D. W. F. Schwarz, H. Taboricova, and T. J. Willey, "Reticulospinal neurons with and without monosynaptic inputs from cerebellar nuclei," J. Neurophysiol.,38, 513 (1975).

    Google Scholar 

  39. J. C. Eccles, R. A. Nicoll, D. W. F. Schwarz, H. Taboricova, and T. J. Willey, "Medial reticular and perihypoglossal neurons projecting to cerebellum," J. Neurophysiol.,39, 102 (1976).

    Google Scholar 

  40. K. Endo and T. Araki, "Two components of the antidromic IPSPs in the pyramidal tract neurons," Brain Res.,39, 510 (1972).

    Google Scholar 

  41. K. Endo, T. Araki, and Y. Kawai, "Contra- and ipsilateral cortical and rubral effects on fast and slow spinal motoneurons of the cat," Brain Res.,88, 91 (1975).

    Google Scholar 

  42. K. Endo, T. Araki, and N. Yagi, "The distribution and pattern of axon branching of pyramidal tract cells," Brain Res.,57, 484 (1973).

    Google Scholar 

  43. E. V. Evarts, "Relation of discharge frequency to conduction velocity in pyramidal tract neurons," J. Neurophysiol.,28, 216 (1965).

    Google Scholar 

  44. E. V. Evarts, "Pyramidal tract activity associated with conditioned hand movement in the monkey," J. Neurophysiol.,29, 1011 (1966).

    Google Scholar 

  45. P. L. Gildenberg and R. Hassler, "Influence of stimulation of the cerebral cortex on vestibular nuclei units in the cat," Exp. Brain Res.,14, 77 (1971).

    Google Scholar 

  46. S. Grillner and S. Lund, "The origin of a descending pathway with monosynaptic action on flexor motoneurons," Acta Physiol. Scand.,74, 274 (1968).

    Google Scholar 

  47. H. Hollander, "On the origin of the corticotectal projections in the cat," Exp. Brain Res.,21, 433 (1974).

    Google Scholar 

  48. H. Hollander, P. Brodal, and F. Walberg, "Electromicroscopic observations on the structure of the pontine nuclei and the mode of termination of the corticopontine fibres. An experimental study in the cat," Exp. Brain Res.,7, 95 (1969).

    Google Scholar 

  49. M. Ito, M. Udo, and N. Mano, "Long inhibitory and excitatory pathways converging onto cat reticular and Deiter's neurons and their relevance to reticulofugal axons," J. Neurophysiol.,33, 210 (1970).

    Google Scholar 

  50. S. I. Kitai, J. O. Kocsis, R. J. Preston, and M. Sugimori, "Monosynaptic inputs to caudate neurons identified by intracellular injection of horseradish peroxidase," Brain Res.,109, 601 (1976).

    Google Scholar 

  51. S. I. Kitai, T. Oshima, L. Provini, and N. Tsukahara, "Cerebro-cerebellar connections mediated by fast- and slow-conducting pyramidal tract fibres of the cat," Brain Res.,15, 267 (1969).

    Google Scholar 

  52. H. Koike, N. Mano, Y. Okada, and T. Oshima, "Repetitive impulses generated in the fast and slow pyramidal tract cells by intracellularly applied current steps," Exp. Brain Res.,11, 263 (1970).

    Google Scholar 

  53. H. Koike, N. Mano, Y. Okada, and T. Oshima, "Activities of sodium pump in cat pyramidal tract cells investigated with intracellular injection of sodium ions," Exp. Brain Res.,14, 449 (1972).

    Google Scholar 

  54. H. G. J. M. Kuypers and D. G. Lawrence, "Cortical projections to the red nucleus and the brain stem in the rhesus monkey," Brain Res.,4, 151 (1967).

    Google Scholar 

  55. H. G. J. M. Kuypers and V. A. Maisky, "Retrograde axonal transport of horse-radish peroxidase from spinal cord to brain stem cell groups in the cat," Neurosci. Lett.,1, 9 (1975).

    Google Scholar 

  56. B. Lewis and H. Clarke, "The cortical lamination of motor area of the brain," Proc. R. Soc., Ser. B.,27, 38 (1978).

    Google Scholar 

  57. A. Lundberg, "Control of spinal mechanisms from the brain," in: The Nervous System, Vol. 1, The Basic Neurosciences, edited by D. B. Tower, Raven Press, New York (1975).

    Google Scholar 

  58. M. Mabuchi and T. Kusama, "The cortico-rubral projection in the cat," Brain Res.,2, 254 (1966).

    Google Scholar 

  59. F. Magni and W. D. Willis, "Identification of reticular formation neurons by intracellular recording," Arch. Ital. Biol.,101, 681 (1963).

    Google Scholar 

  60. F. Magni and W. D. Willis, "Cortical control of brain stem reticular neurons," Arch. Ital. Biol.,102, 418 (1964).

    Google Scholar 

  61. H. Naito, K. Nakamura, T. Kurosaki, and Y. Tamura, "Precise location of fast and slow pyramidal tract cells in cat sensomotor cortex," Brain Res.,14, 237 (1969).

    Google Scholar 

  62. H. Naito, K. Nakamura, T. Kurosaki, and Y. Tamura, "Transcallosal excitatory postsynaptic potentials of fast and slow pyramidal tract cells in cat sensomotor cortex," Brain Res.,19, 229 (1970).

    Google Scholar 

  63. R. Nyberg-Hansen, "Functional organization of descending supraspinal fibre systems to the spinal cord. Anatomical observations and physiological correlations," Ergeb. Anat. Entwicklungsgesch.,39, 1 (1966).

    Google Scholar 

  64. T. Oshima, "Studies of pyramidal tract cells," in: Basic Mechanisms of the Epilepsies (H. H. Jasper, A. A. Warol, and A. Pope, eds.), Little Brown, Boston (1969), pp. 253–261.

    Google Scholar 

  65. Y. Padel and A. M. Smith, "Topographical investigation of cortical afferents to the red nucleus in the cat," Experientia,27, 271 (1971).

    Google Scholar 

  66. Y. Padel, J. Armand, and A. M. Smith, "Topography of rubrospinal units in cat," Exp. Brain Res.,14, 363 (1972).

    Google Scholar 

  67. J. Pavlasek, P. Strauss, A. P. Gokin, and P. Duda, "Reticulospinal neurons with axons in the dorsal part of the lateral funiculus," Proceedings of the Czechoslovak Physiological Society, September 1977, pp. 14–16.

  68. B. W. Peterson, E. M. Anderson, and M. Fillion, "Responses of ponto-medullary reticular neurons to cortical, tectal and cutaneous stimuli," Exp. Brain Res.,21, 19 (1974).

    Google Scholar 

  69. A. I. Pilyavsky, "Characteristics of fast and slow cortico-bulbar fibre projections to reticulospinal neurons," Brain Res.,85, 49 (1975).

    Google Scholar 

  70. A. I. Pilyavsky and A. P. Gokin, "Investigation of the cortico-reticulospinal connections in cats," Neuroscience,3, 99 (1978).

    Google Scholar 

  71. C. G. Phillips, "Action of antidromic pyramidal volleys on single Betz cells in the cat," Quart. J. Exp. Physiol.,14, 1 (1959).

    Google Scholar 

  72. J. B. Preston and D. G. Whitlock, "A comparison of motor cortex effects on slow and fast muscle innervations in the monkey," Exp. Neurol.,7, 327 (1963).

    Google Scholar 

  73. E. Rinvik, "The cortico-thalamic projection from the pericruciate and coronal gyri in the cat. An experimental study with silver impregnation methods," Brain Res.,10, 79 (1968).

    Google Scholar 

  74. R. T. Robertson, "Bidirectional movement of horseradish peroxidase and the demonstration of reciprocal thalamocortical connections," Brain Res.,129, 538 (1977).

    Google Scholar 

  75. M. A. Romagnano and R. J. Maciewicz, "Peroxidase labelling of motor cortex neurons projecting to the ventrolateral nucleus in the cat," Brain Res.,83, 469 (1975).

    Google Scholar 

  76. G. F. Rossi and A. Brodal, "Corticofugal fibers to the brain-stem reticular formation. An experimental study in the cat," J. Anat.,90, 42 (1956).

    Google Scholar 

  77. G. F. Rossi and A. Brodal, "Terminal distribution of spino-reticular fibres in the cat," Arch. Neurol. Psychiatry,78, 439 (1957).

    Google Scholar 

  78. M. E. Scheibel and A. B. Scheibel, "Structural substrates for integrative patterns in the brain stem reticular core," in: Reticular Formation of the Brain. Chapter II, Henry Ford Hospital Symposium, Little Brown and Co., Boston (1962), pp. 31–55.

    Google Scholar 

  79. R. F. Schmidt, "Presynaptic inhibition in the vertebrate central nervous system," in: Ergebnisse der Physiologie, Springer-Verlag, Berlin (1971), pp. 20–101.

    Google Scholar 

  80. A. Sousa-Pinto and A. Brodal, "Demonstration of a somatotopical pattern in the cortico-olivary projection in the cat. An experimental—anatomical study," Exp. Brain Res.,8, 364 (1969).

    Google Scholar 

  81. C. Stefanis and H. Jasper, "Intracellular microelectrode studies of antidromic responses in cortical pyramidal tract neurons," J. Neurophysiol.,27, 828 (1964).

    Google Scholar 

  82. J. Szenthagothai-Schimert, "Die Bedeutung des Faserkalibers und der Markscheidendicke im Zentralnervensystem," J. Anat. Entwicklungsgesch.,111, 201 (1941).

    Google Scholar 

  83. K. Takahashi, "Slow and fast groups of pyramidal tract cells and their respective membrane properties," J. Neurophysiol.,28, 908 (1965).

    Google Scholar 

  84. K. Takahashi, K. Kubota, and M. Uno, "Recurrent facilitation in cat pyramidal tract cells," J. Neurophysiol.,30, 22 (1967).

    Google Scholar 

  85. A. L. Towe, "Somatosensory cortex descending influences on ascending systems," in: Handbook of Sensory Physiology, Vol. 2, Somatosensory System, edited by A. Iggo, Springer-Verlag, Berlin, Heidelberg, and New York (1972), pp. 701–718.

    Google Scholar 

  86. A. L. Towe, "Relative numbers of pyramidal tract neurons in mammals of different sizes," Brain Behav. Evol.,7, 1 (1973).

    Google Scholar 

  87. A. L. Towe, H. D. Patton, and T. Kennedy, "Properties of pyramidal system in the cat," Exp. Neurol.,8, 220 (1963).

    Google Scholar 

  88. T. Tsumoto, S. Nakamura, and K. Iwama, "Pyramidal tract control over cutaneous and kinesthetic sensory transmission in the cat thalamus," Exp. Brain Res.,22, 281 (1975).

    Google Scholar 

  89. N. Tsukahara, D. R. G. Fuller, and V. B. Brooks, "Collateral pyramidal influences on the corticorubrospinal system," J. Neurophysiol.,31, 467 (1968).

    Google Scholar 

  90. N. Tsukahara, K. Toyama, and K. Kosaka, "Electrical activity of red nucleus neurons investigated with intracellular microelectrodes," Exp. Brain Res.,4, 18 (1967).

    Google Scholar 

  91. F. Valverde, "The pyramidal tract in rodents. A study of its relations with the posterior column nuclei, dorsolateral reticular formation of the medulla oblongata, and cervical spinal cord," Z. Zellforsch.,71, 297 (1966).

    Google Scholar 

  92. D. A. Vasilenko, P. G. Kostyuk, A. I. Kostyukov, and A. I. Pilyavsky (A. I. Pilyavskii), "Functional significance of premoto, elements in transmission of descending motor signals," in: Abstracts of the 3rd International Symposium on Motor Control, Albena, Bulgaria (1976), p. 76.

  93. W. J. C. Verhaart, "The pyramidal tract. Its structure and functions in man and animals," World Neurology, Minneapolis,3, 44 (1962).

    Google Scholar 

  94. M. Wiesendanger, "The pyramidal tract. Recent investigations on its morphology and function," Ergeb. Physiol.,61, 72 (1969).

    Google Scholar 

  95. P. Zangger and M. Wiesendanger, "Excitations of lateral reticular nucleus neurons by collaterals of the pyramidal tract," Exp. Brain Res.,17, 144 (1973).

    Google Scholar 

Download references

Authors

Additional information

A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 5, pp. 534–549, September–October, 1978.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilyavskii, A.I. Neuronal organization of fast- and slow-conducting components of the pyramidal system. Neurophysiology 10, 393–406 (1978). https://doi.org/10.1007/BF01063217

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01063217

Keywords

Navigation