Advertisement

Ukrainian Mathematical Journal

, Volume 45, Issue 4, pp 481–489 | Cite as

Periodic Gibbs states

  • V. S. Barbulyak
  • Yu. G. Kondrat'ev
Article
  • 17 Downloads

Abstract

Periodic Gibbs states for quantum lattice systems are investigated. We formulate the definition of the periodic Gibbs states and the measures associated with them. Theorems of existence are proved for these states. We also prove the existence of the critical temperature for the system of anharmonic quantum oscillators with pairwise interaction.

Keywords

Critical Temperature Lattice System Pairwise Interaction Quantum Oscillator Gibbs State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Albeverio and R. Høegh-Krohn, “Homogeneous random fields and statistical mechanics,”J. Func. Anal.,19, No. 2, 242–272 (1975).Google Scholar
  2. 2.
    S. A. Globa and Yu. G. Kondrat'ev, “Construction of Gibbs states of quantum lattice systems,” in:Application of the Functional Analytical Methods to the Problems of Mathematical Physics [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1987), pp. 4–16.Google Scholar
  3. 3.
    M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. 2.Fourier Analysis. Self-Adjointness, Academic Press, San Diego, CA (1975).Google Scholar
  4. 4.
    V. S. Barbulyak and Yu. G. Kondrat'ev, “Criteria of existence of periodic Gibbs states of quantum lattice systems,” in:Methods of Functional Analysis in the Problems of Mathematical Physics [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1990), pp. 30–41.Google Scholar
  5. 5.
    I. J. Fröhlich, R. Israel, E. Lieb, and B. Simon, “Phase transition and reflection-positivity,”Commun. Math. Phys.,62, No. 1, 1–37 (1978).Google Scholar
  6. 6.
    S. B. Shlosman, “The method of reflection positivity in the mathematical theory of phase transitions of the first kind,”Usp. Mat. Nauk,41, Issue 3, 69–111 (1986).Google Scholar
  7. 7.
    P. Billingsley,Convergence of Probability Measures, Wiley, New York (1968).Google Scholar
  8. 8.
    F. J. Dyson, E. H. Lieb, and B. Simon, “Phase transitions in quantum spin systems with isotropic and nonisotropic interactions,”J. Stat. Phys.,18, No. 4, 335–383 (1978).Google Scholar
  9. 9.
    L. A. Pastur and B. A. Khoruzhenko, “Phase transitions in quantum models of rotators in segnetoelectrics,”Tear. Mat. Fiz.,73, No. 1, 111–124(1987).Google Scholar
  10. 10.
    W. Driessler, L. Landau, and J. F. Perez, “Estimates of critical lengths and critical temperatures for classical and quantum lattice systems,”J. Stat. Phys.,20, No. 2, 123–162 (1979).Google Scholar
  11. 11.
    B. Simon,The P(ϕ) 2 Euclidean (Quantum) Field Theory, Princeton Univ. Press, Princeton, NJ (1974).Google Scholar
  12. 12.
    B. Simon, “Semiclassical analysis of low lying eigenvalues, II. Tunneling,”Ann. Math.,120, No. 1, 89–118 (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • V. S. Barbulyak
    • 1
  • Yu. G. Kondrat'ev
    • 2
  1. 1.Lvov UniversityLvov
  2. 2.Institute of MathematicsUkrainian Academy of SciencesKiev

Personalised recommendations