Advertisement

On the dose dependency of Cyclosporin a absorption and disposition in healthy volunteers

  • Jean-Philippe Reymond
  • Jean-Louis Steimer
  • Werner Niederberger
Article

Abstract

The pharmacokinetics of Cyclosporin A (CyA, SandimmuneR) was studied in 12 healthy male volunteers after oral dosing of 350 mg, 700 mg, and 1400 mg as a drinking solution. Blood samples were collected over 96 hr and analyzed by high pressure liquid chromatography. Concentration data were evaluated with model-independent and model-based linear pharmacokinetic concepts. Individual CyA concentration-time profiles in whole blood were well described by a two-compartment open model with zero-order absorption for all three doses. Comparison of pharmacokinetic parameters across doses indicates that both absorption and disposition are dose-dependent. Nonlinear disposition is suggested by the significant increase of the terminal half-life from 8.9±4.9hr to 11.9±4.9hr (mean±SD) after a 350 mg and a 1400 mg dose, respectively. Changes in the metabolic activity of the liver with concentration might be responsible for this phenomenon. In addition, the modeling approach indicated that bioavailability decreases with increasing dose. Moreover, the dependence of the rate of CyA absorption (zero-order rate constant) versus dose was well described by a hyperbola. The limited solubility of the drug in the gastrointestinal tract might be responsible for this behavior. The lag time (0.2–0.8 hr) was independent of dose. This value is similar to the time of gastric emptying in fasting volunteers. The duration of absorption for 11 of 12 subjects was in the range 2.5–3.5 hr over all doses and agrees well with the small intestine transit time. Some subjects showed a marked secondary peak at one or two doses, which could be adequately fitted by a model with two successive zero-order inputs. This double-peak behavior was ascribed to the influence of the food on gastric emptying. Dose dependency of disposition and absorption counterbalance each other in the usual dose range. This leads to an almost proportional increase of area under the blood CyA concentration-time profile with increasing dose.

Key words

Cyclosporin A pharmacokinetics dose dependency oral absorption disposition healthy subjects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. Ptachcinski, R. Venkataramanan, and G. J. Burckart. The clinical pharmacokinetics of cyclosporine.Clin. Pharmacokin. 11:107–132 (1986).CrossRefGoogle Scholar
  2. 2.
    R. J. Ptachcinski, R. Venkataramanan, G. J. Burckart, J. T. Rosenthal, R. J. Taylor, and T. R. Hakala. Dose-dependent absorption of cyclosporineDrug Intell. Clin. Pharm. 19:450 (1985).Google Scholar
  3. 3.
    B. D. Kahan. Individualization of cyclosporine therapy using pharmacokinetic and pharmacodynamic parameters. Transplantation40:457–476 (1985).PubMedCrossRefGoogle Scholar
  4. 4.
    J. Grevel, E. Nüesch, E. Abisch, and K. Kutz. Pharmacokinetics of oral cyclosporin A in healthy subjects.Eur. J. Clin. Pharmacol. 31:211–216 (1986).PubMedCrossRefGoogle Scholar
  5. 5.
    C. R. Abolin, H. F. Schran, D. W. Bitz, and S. Solar-Yohay.A Study of the Dose-Bioavailbility Relationship of Sandimmune Oral Solution in Normal Volunteers (Study No. 50), Sandoz Inc., East-Hanover, 1982.Google Scholar
  6. 6.
    D. Du Bois and E. F. Du Bois. A formula to estimate the approximate surface area if height and weight be known.Arch. Intern. Med. 17:863 (1916).CrossRefGoogle Scholar
  7. 7.
    H. T. Smith and W. T. Robinson. Semi-automated liquid chromatographic method for the determination of cyclosporine in plasma and blood using column switching.J. Chromatog. 305:353–362 (1984).CrossRefGoogle Scholar
  8. 8.
    R. J. Ptachcinski, R. Venkataramanan, G. J. Burckart, J. Gray, D. H. Van Thiel, A. Sanghvi, and J. T. Rosenthal. Cyclosporine kinetics in normal volunteers.J. Clin. Pharmacol. 27:243–248 (1987).PubMedCrossRefGoogle Scholar
  9. 9.
    J. P. Reymond. In vitro in vivo Modelle zur Absorption von Cyclosporin A. Ph.D. dissertation, University of Basel, 1986.Google Scholar
  10. 10.
    L. B. Sheiner. ELSFIT, a program for the extended least squares fit to individual pharmacokinetic data. A technical report of the Division of Clinical Pharmacology, University of California, 1980.Google Scholar
  11. 11.
    D. Perrier and M. Mayersohn. Noncompartmental determination of the steady-state volume of distribution for any mode of administration.J. Pharm. Sci. 71:372–373 (1982).PubMedCrossRefGoogle Scholar
  12. 12.
    P. R. Gwilt, M. C. Pankaskie, J. E. Thornburg, R. Zustiak, and D. R. Shoenthal. Pharmacokinetics of methylprylon following a single oral dose.J. Pharm. Sci. 74:1001–1003 (1985).PubMedCrossRefGoogle Scholar
  13. 13.
    RS/1Version 12.00. BBN Research Systems, Cambridge, MA, 1984.Google Scholar
  14. 14.
    E. M. Landaw and J. J. Distefano III. Multiexponential, multicompartmental, and noncompartmental modeling II. Data analysis and statistical considerations.Am. J. Physiol. 246:R665-R677 (1984).PubMedGoogle Scholar
  15. 15.
    L. J. Lesko, J. Minor, D. Yocum, T. Emm, and J. H. Klippel. Pharmacokinetics of cyclosporine in patients with rheumatoid arthiritis.Clin. Pharmacol. Ther. 39:207 (1986).Google Scholar
  16. 16.
    S. Øie, T. W. Guentert, and T. N. Tozer. Effect of saturable binding on the pharmacokinetics of drugs: a simulation.J. Pharm. Pharmacol. 32:471–477 (1980).PubMedCrossRefGoogle Scholar
  17. 17.
    K. Nussbaumer. Biopharmazeutische Untersuchungen mit Cyclosporin A: Bioanalytik und Pharmakokinetik. Ph.D. dissertation, University of Basel, Switzerland, 1984.Google Scholar
  18. 18.
    M. Rowland and T. Tozer.Clinical Pharmacokinetics, Lea and Febiger, Philadelphia, 1980, p. 45.Google Scholar
  19. 19.
    T. Beveridge. Pharmacokinetics and metabolism of Cyclosporin A. In D. J. G. White (ed.),Cyclosporin A, Elsevier Biomedical Press, Amsterdam, 1982, pp. 35–44.Google Scholar
  20. 20.
    R. J. Ptachcinski, R. Venkataraman, G. J. Burckart, S. Yang, and T. E. Starzl. Extraction ratio of cyclosporine in a liver transplant patient with organ rejection.J. Pharm. Sci. 74:901–902 (1985).PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    W. M. Awni and R. J. Sawchuk. The pharmacokinetics of cyclosporine. I. single dose and constant rate infusion studies in the rabbit.Drug Metab. Dispos. 13:127–132 (1985).PubMedGoogle Scholar
  22. 22.
    W. M. Awni and R. J. Sawchuck. The pharmacokinetics of cyclosporine. II. blood plasma distribution and binding studies.Drug Metab. Dispos. 13:133–138 (1985).PubMedGoogle Scholar
  23. 23.
    K. Nooter, F. Schultz, and P. Sonneveld. Evidence for a possible dose-dependent pharmacokinetic of cyclosporin A in the rat.Res. Commun. Chem. Pathol. Pharmacol. 43:407–415 (1984).PubMedGoogle Scholar
  24. 24.
    S. K. Gupta, B. Legg, L. R. Solomon, R. W. G. Johnson, and M. Rowland: Pharmacokinetics of cyclosporin: influence of rate of constant intravenous infusion in renal transplant patients.Br. J. Clin. Pharmacol. 24:519–526 (1987).PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    C. T. Ueda, M. Lemaire, G. Gsell, P. Misslin, and K. Nussbaumer. Apparent dose-dependent oral absorption of cyclosporin A in rats.Biopharm. Drug Dispos. 5:141–151 (1984).PubMedCrossRefGoogle Scholar
  26. 26.
    J. G. Wagner, A modern view of pharmacokinetics.J. Pharmacokin. Biopharm. 1:363–401 (1973).CrossRefGoogle Scholar
  27. 27.
    P. J. McNamara, W. A. Colburn, and M. Gibaldi. Absorption kinetics of hydroflumethiazide.J. Clin. Pharmacol. 18:190–193 (1978).PubMedCrossRefGoogle Scholar
  28. 28.
    P. G. Welling, L. L. Lyons, B. S. R. Elliott, and G. L. Amidon. Pharmacokinetics of alcohol following single low doses to fasted and non fasted subjects.J. Clin. Pharmacol. 17:199–206 (1977).PubMedCrossRefGoogle Scholar
  29. 29.
    L. R. Whitfield, P. N. Kaul, and M. L. Clark. Chloropromazine metabolism. IX pharmacokinetics of chloropromazine following oral administration in man.J. Pharmacokin. Biopharm. 6:187–196 (1978).CrossRefGoogle Scholar
  30. 30.
    R. M. J. Ings, J. R. Lawrence, A. McDonald, J. McEwan, A. W. Pidgen, and J. D. Robinson. Glibenclamide pharmacokinetics in healthy volunteers: Evidence for zero-order drug absorption.Proc. Br. Pharmacol. Soc.:264p–265p (1981).Google Scholar
  31. 31.
    T. W. Guentert, N. H. G. Holford, P. E. Coates, R. A. Upton, and S. Riegelman. Quinidine pharmacokinetics in man: choice of a disposition model and absolute bioavailability studies.J. Pharmacokin. Biopharm. 7:315–330 (1979).CrossRefGoogle Scholar
  32. 32.
    M. Thibonnier, N. H. G. Holford, R. A. Upton, C. D. Blume, and R. L. Williams. Pharmacokinetic-pharmacodynamic analysis of unbound disopyramide directly measured in serial plasma samples in man.J. Pharmacokin. Biopharm. 12:559–573 (1984).CrossRefGoogle Scholar
  33. 33.
    E. Redalieu, K. K. H. Chan, V. Tipnis, S. B. Zak, T. G. Gilleran, W. E. Wagner Jr., and A. R. LeSher. Kinetics of hydrochorothiazide absorption in humans.J. Pharm. Sci. 74:765–767 (1985).PubMedCrossRefGoogle Scholar
  34. 34.
    J. R. Malagelada, J. S. Robertson, M. L. Brown, M. Remington, J. A. Duenes, G. M. Thomforde, and P. W. Carryer. Intestinal transit of solid and liquid components of a meal in health.Gastroenterology 87:1255–1263 (1984).PubMedGoogle Scholar
  35. 35.
    R. Wassef, Z. Cohen, S. Nordgren, and B. Langer. Cyclosporine absorption in intestinal transplantation.Transplantation 39:496–499 (1985).PubMedCrossRefGoogle Scholar
  36. 36.
    R. Venkataramanan, T. E. Starzl, S. Yang, G. J. Burckart, R. J. Ptachcinski, B. W. Shaw, S. Iwatsuki, D. H. VanThiel, A. Sanghvi, and H. Seltman. Biliary excretion of cyclosporine in liver transplant patients.Transplant. Proc. 17(1):286–289 (1985).PubMedCentralPubMedGoogle Scholar
  37. 37.
    J. Spenard, G. Sirois, and M. A. Gagnon. The second peak in the serum levels curve after oral administrtion of a slow-release quinidine dosage form: effect of food.Br. J. Clin. Pharmacol. 13:752–754 (1982).PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    P. G. Welling. Influence of food and diet on gastrointestinal drug absorption: a review.J. Pharmacokin. Biopharm. 5:291–334 (1977).CrossRefGoogle Scholar
  39. 39.
    P. G. Welling. Interactions affecting drug absorption.Clin. Pharmacokin. 9:404–434 (1984).CrossRefGoogle Scholar
  40. 40.
    W. Andrews, S. Iwatsuki, and T. E. Starzl. Letter.Transplantation 39:338 (1985).PubMedCrossRefGoogle Scholar
  41. 41.
    P. A. Keown, C. R. Stiller, M. Stawecki, J. McMichael, and W. Howson. Pharmacokinetics and interactions of ciclosporin In R. Schindler (ed.),Ciclosporin in Autoimmune Diseases, Springer Verlag, Berlin, 1985, pp. 39–42.CrossRefGoogle Scholar
  42. 42.
    A. J. Wood and M. Lemaire. Pharmacologic aspects of cyclosporine therapy: Pharmacokinetics.Transplant. Proc. 17(4, Suppl 1):27–32 (1985).PubMedGoogle Scholar
  43. 43.
    R. J. Ptachcinski, R. Venkataramanan, J. T. Rosenthal, G. J. Burckart, R. J. Taylor, and T. R. Hakala. The effect of food on cyclosporine absorption.Transplantation 40:174–176 (1985).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Jean-Philippe Reymond
    • 1
  • Jean-Louis Steimer
    • 2
  • Werner Niederberger
    • 1
  1. 1.Biopharmaceutical DepartmentSandoz LtdBaselSwitzerland
  2. 2.Department of BiomathematicsINSERM U 194ParisFrance

Personalised recommendations