Skip to main content
Log in

A pharmacodynamic model for cell-cycle-specific chemotherapeutic agents

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript


A pharmacodynamic model is proposed and equations are developed for the quantitative analysis of dose-time-cell-survival curves produced by the administration of cell-cycle-specific chemo-therapeutic agents. The essential feature of the model is an irreversible, bimolecular mechanism of drug-receptor interaction which serves as the interface between the pharmacokinetics of the drug and the cell-cycle-cell-proliferation kinetics of the normal and neoplastic cells. A preliminary cell system which allows adequate characterization of the experimental data is a two-compartment model where cells are assumed to exist in their proliferative and nonproliferative phases. The chemotherapeutic model was used to analyze dose-time-cell-survival curves found in the literature for the effects of vincristine, vinblastine, arabinosylcytosine, and cyclophosphamide on lymphoma and hematopoietic cells in the mouse femur. Similarity in the values of the “cell-kill” constants for these drugs on the two cell types indicates that, in the cell systems studied, the proliferative state of the cells is the primary in vivodeterminant of selective chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. H. E. Skipper. The cell cycle and chemotherapy of cancer. In R. Baserga (ed.),The Cell Cycle and Cancer, Marcel Dekker, New York, pp. 358–387 (1971).

    Google Scholar 

  2. W. J. Jusko. Pharmacodynamics of chemotherapeutic effects: Dose-time-response relationships for phase-nonspecific agents.J. Pharm. Sci.,60, 892–895 (1971).

    Article  CAS  PubMed  Google Scholar 

  3. W. J. Jusko. Pharmacokinetic principles in pediatric pharmacology.Pediat. Clin. N. Am.,19, 81–100 (1972).

    CAS  PubMed  Google Scholar 

  4. L. Simpson-Herren, and H. H. Lloyd. Kinetic parameters and growth curves for experimental tumor systems.Cancer Chemotherap. Rep. Part 1,54, 143–174 (1970).

    CAS  Google Scholar 

  5. R. L. Dedrick, D. D. Forrester, and D. H. W. Ho.In vitro-In vivo correlation of drug metabolism-Deamination of 1-β-d-arabinofuranosylcytosine.Biochem. Pharmacol.,21, 1–16 (1972).

    Article  CAS  PubMed  Google Scholar 

  6. IBM Scientific Subroutine RKGS, 360A-CM-03X, Version III. IBM Technical Publications Department, White Plains, N.Y. (1968).

    Google Scholar 

  7. W. R. Bruce, and B. E. Meeker. Dissemination and growth of transplanted isologous murine lymphoma cells.J. Natl. Cancer Inst.,32, 1145–1159 (1964).

    CAS  PubMed  Google Scholar 

  8. F. A. Valeriote, and W. R. Bruce. Comparison of the sensitivity of hematopoietic colony-forming cells in different proliferative states to vinblastine.J. Natl. Cancer Inst.,38, 393–399 (1967).

    CAS  PubMed  Google Scholar 

  9. W. R. Bruce, B. E. Meeker, W. E. Powers, and F. A. Valeriote. Comparison of the dose-and time-survival curves for normal hematopoietic and lymphoma colony-forming cells exposed to vinblastine, vincristine, arabinosylcytosine, and amethopterin.J. Natl. Cancer Inst.,42, 1015–1023 (1969).

    CAS  PubMed  Google Scholar 

  10. W. R. Bruce, and F. A. Valeriote. Normal and malignant stem cells and chemotherapy.Ann. Symp. Fund. Cancer Res., pp. 409–122 (1967).

  11. C. M. Metzler. NONLIN. Technical Report No. 7292/69/7293/005, Upjohn, Kalamazoo, Mich. (1969).

    Google Scholar 

  12. F. A. Valeriote, and W. R. Bruce. Anin vitro assay for growth-inhibiting activity of vinblastine.J. Natl. Cancer Inst.,35, 851–856 (1965).

    CAS  PubMed  Google Scholar 

  13. K. B. Bischoff, K. J. Himmelstein, R. L. Dedrick, and D. S. Zaharko. Pharmacokinetics and cell population growth models in cancer chemotherapy.ACS Advan. Chem., in press (1972).

  14. K. B. Bischoff, R. L. Dedrick, D. S. Zaharko, and J. A. Longstreth. Methotrexate pharmacokinetics.J. Pharm. Sci.,60, 1128–1133 (1971).

    Article  CAS  PubMed  Google Scholar 

  15. C. F. Evert, and M. J. Randall. Formulation and computation of compartment models.J. Pharm. Sci.,59, 403–409 (1970).

    Article  CAS  PubMed  Google Scholar 

  16. G. M. Hahn. A formalism describing the kinetics of some mammalian cell populations.Math. Biosci.,6, 295–304 (1970).

    Article  Google Scholar 

  17. S. I. Rubinow, J. L. Lebowitz, and A.-M. Sapse. Parameterization ofin vivo leukemic cell populations.Biophys. J.,11, 175–188 (1971).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. W. C. Werkheiser. Mathematical simulation in chemotherapy.Ann. N.Y. Acad. Sci.,186, 343–358 (1971).

    Article  CAS  PubMed  Google Scholar 

  19. W. C. Werkheiser, G. B. Grindley, R. G. Moran, and C. A. Nichol. Mathematical simulation of the interaction of drugs which inhibit DNA biosynthesis.Mol. Pharmacol.,9, 320–329 (1973).

    CAS  PubMed  Google Scholar 

  20. K. J. Himmelstein and K. B. Bischoff. Mathematical representations of cancer chemotherapy effects.J. Pharmacokin. Biopharm.,1, 51–68 (1973).

    Article  CAS  Google Scholar 

  21. K. J. Himmelstein and K. B. Bischoff. Models of ARA-C chemotherapy of L1210 leukemia in mice,J. Pharmacokin. Biopharm.,1, 69–81 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jusko, W.J. A pharmacodynamic model for cell-cycle-specific chemotherapeutic agents. Journal of Pharmacokinetics and Biopharmaceutics 1, 175–200 (1973).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI:

Key words