Advertisement

Ukrainian Mathematical Journal

, Volume 46, Issue 3, pp 204–218 | Cite as

On M. G. Krein's works in the theory of representations and harmonic analysis on topological groups

  • L. I. Vainerman
Article

Abstract

This is a brief survey of M. G. Krein's papers in the theory of representations and harmonic analysis on topological groups. These papers are known to be classical and form the basis of numerous contemporary researches into these fields.

Keywords

Harmonic Analysis Topological Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Bannai and T. Itô,Algebraic Combinatorics. I, Benjamin Cammings Publ. Company, London (1984).Google Scholar
  2. 2.
    A. F. Ber, “Duality principle for compact inverse semigroups,”Dokl. Acad. Nauk Uzbek. SSR, No. 7, 7–9 (1986).Google Scholar
  3. 3.
    Yu. M. Berezanskii, “On the center of a group ring of a compact group,”Dokl. Acad. Nauk SSSR,72, No. 5, 825–828 (1950).Google Scholar
  4. 4.
    Yu. M. Berezanskii, “Hypercomplex systems with discrete bases,”Dokl. Acad. Nauk SSSR,81, No. 3, 329–332 (1951).Google Scholar
  5. 5.
    Yu. M. Berezanskii,Expansion in Eigenfunctions of Self-Adjoint Operators [in Russian], Naukova Dumka, Kiev (1965).Google Scholar
  6. 6.
    Yu. M. Berezanskii and A. A. Kalyuzhnyi, “Hypercomplex systems with locally compact basis,”Selecta Math. Sov.,4, No. 2, 151–200 (1985).Google Scholar
  7. 7.
    Yu. M. Berezanskii and A. A. Kalyuzhnyi, “Spectral decompositions of representations of hypercomplex systems,” in:Spectral Theory of Operators and Infinite-Dimensional Analysis [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1984), pp. 4–19.Google Scholar
  8. 8.
    Yu. M. Berezanskii and S. G. Krein, “Continual algebras,”Dokl. Acad. NaukSSSR,72, No. 1, 5–8 (1950).Google Scholar
  9. 9.
    Yu. M. Berezanskii and S. G. Krein, “Hypercomplex systems with compact bases,”Ukr. Mat. Zh.,3, No. 2, 184–204 (1951).Google Scholar
  10. 10.
    Yu. M. Berezanskii and S. G. Krein, “Hypercomplex systems with continual bases,”Usp. Mat. Nauk,12, No. 1, 147–152 (1957).Google Scholar
  11. 11.
    Yu. M. Berezin and I. M. Gel'fand, “Some remarks to the theory of spherical functions on symmetric Riemannian manifolds,”Tr. Mosk. Mat. Obshch.,5, 311–351 (1956).Google Scholar
  12. 12.
    O. Bratteli and D. Robinson,Operator Algebras and Quantum Statistical Mechanics. 1, Springer Verlag, New York-Heidelberg-Berlin (1982).Google Scholar
  13. 13.
    L. I. Vainerman, “Characterization of objects dual to locally compact groups,”Funkts. Anal. Prilozh.,8, No. 1, 75–76 (1974).Google Scholar
  14. 14.
    L. I. Vainerman, “Kats finite hypercomplex systems,”Funkts. Anal. Prilozh.,17, No. 16, 68–69 (1983).Google Scholar
  15. 15.
    L. I. Vainerman, “Hypercomplex systems with compact and discrete bases,”Dokl. Acad. Nauk SSSR,278, No. 1, 16–20 (1984).Google Scholar
  16. 16.
    L. I. Vainerman, “Duality of algebras with involution and operators of generalized shift,” in:VINITI Series in Mathematical Analysis [in Russian], Vol 24, VINITI, Moscow (1986), pp. 165–205.Google Scholar
  17. 17.
    L. I. Vainerman, “On the abstract Plancherel formula and inversion formula,”Ukr. Mat. Zh.,41, No. 8, 1041–1047 (1989).Google Scholar
  18. 18.
    L. I. Vainerman and A. A. Kalyuzhnyi, “Quantized hypercomplex systems,” in:Boundary-Value Problems for Differential Equations [in Russian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1988), pp. 13–29;Funkts. Anal. Prilozh.,23, No. 4, 77–78 (1989).Google Scholar
  19. 19.
    L. I. Vainerman and G.I. Kats, “Nonunimodular ring groups and Hopf- von Neumann algebras,”Dokl. Acad. Nauk SSSR,211, No. 5, 1031–1034 (1973);Mat. Sb.,94, No. 2, 194–225 (1974).Google Scholar
  20. 20.
    L. I. Vainerman and G. L. Litvinov, “Plancherel and inversion formulas for the operators of generalized shift,”Dokl. Acad. Nauk SSSR,251, No. 4, 792–795 (1981).Google Scholar
  21. 21.
    A. Weil,L'integration dans les Groupes Topologiques et ses Applications, Hermann, Paris (1940).Google Scholar
  22. 22.
    A. M. Vershik, “Geometric theory of states, von Neumann's boundary, duality ofC *-algebras,”Zap. Leningr. Otd. Mat. Inst. Acad. Nauk SSSR,29, 147–154 (1972).Google Scholar
  23. 23.
    N. Ya. Vilenkin,Special Functions and the Theory of Representations of Groups [in Russian], Nauka, Moscow (1965).Google Scholar
  24. 24.
    I. M. Gel'fand, “Normed rings,”Mat. Sb.,9, 3–24 (1941).Google Scholar
  25. 25.
    I. M. Gel'fand, “Spherical functions on symmetric Riemannian spaces,”Dokl. Acad. Nauk SSSR,70, No. 1, 5–8 (1950).Google Scholar
  26. 26.
    I. M. Gel'fand and D. A. Raikov, “Irreducible unitary representations of locally bicompact groups,”Mat. Sb.,13, 301–316 (1943).Google Scholar
  27. 27.
    S. G. Gindikin and F. I. Karpelevich, “Plancherel measure on Riemannian symmetric spaces of nonpositive curvature,”Dokl. Acad. Nauk SSSR,145, 252–255 (1962).Google Scholar
  28. 28.
    R. Ya. Grabovskaya and S. G. Krein, “On a representation of the algebra of differential operators and on the related differential equations,”Dokl. Acad. Nauk SSSR,212, No. 2, 280–284 (1973).Google Scholar
  29. 29.
    P. Deligne and J. S. Milne, “Tannaka categories,” in: P. Deligne, J. S. Milne, A. Ogus, and Kuang-yen Shih,Hodge Cycles, Motives, and Shimura Varieties, Springer Lect. Notes Math.,900, 101–228 (1982).Google Scholar
  30. 30.
    J. Dixmier,Les C *-Algebres et leurs Representations, Gauthier-Villars, Paris (1969).Google Scholar
  31. 31.
    V. G. Drinfel'd, “Quantum groups,”Zap. Leningr. Otd. Mat. Inst. Acad. Nauk SSSR,155, 18–49 (1986).Google Scholar
  32. 32.
    A. A. Kalyuzhnyi, “A theorem on the existence of a multiplicative measure,”Ukr. Mat. Zh.,35, No. 3, 369–371 (1983).Google Scholar
  33. 33.
    G. I. Kats, “A generalization of the group duality principle,”Dokl. Acad. Nauk SSSR,138, No. 2, 275–278 (1961).Google Scholar
  34. 34.
    G. I. Kats, “Representations of compact ring groups,”Dokl. Acad. Nauk SSSR,145, No. 5, 989–992 (1962).Google Scholar
  35. 35.
    G. I. Kats, “Compact and discrete ring groups,”Ukr. Mat. Zh.,14, No. 3, 260–270 (1962).Google Scholar
  36. 36.
    G. I. Kats, “Ring groups and the duality principle. I,”Tr. Mosk. Mat. Obshch.,12, 259–301 (1963); II,Ibid.,13, 84–113 (1965).Google Scholar
  37. 37.
    G. I. Kats and V. G. Palyutkin, “Finite ring groups,”Tr. Mosk. Mat. Obshch.,15, 224–261 (1966).Google Scholar
  38. 38.
    S. V. Kerov, “Duality of finite-dimensional *-algebras,”Vestn. Leningr. Univ., No. 7, 23–29 (1974).Google Scholar
  39. 39.
    A. A. Kirillov, “Introduction to theory of representations and noncommutative harmonic analysis,” in:VINITI Series in Fundamental Directions [in Russian], Vol. 22, VINITI, Moscow (1968), pp. 5–162.Google Scholar
  40. 40.
    M. G. Krein, “On a ring of functions defined on a topological group,”Dokl. Acad. Nauk SSSR,29, No. 4, 275–280 (1940).Google Scholar
  41. 41.
    M. G. Krein, “On a special ring of functions,”Dokl. Acad. Nauk SSSR,29, No. 5–6, 355–359 (1940).Google Scholar
  42. 42.
    M. G. Krein, “On the theory of almost periodic functions on a topological group,”Dokl. Acad. Nauk SSSR,30, No. 1, 5–8 (1941).Google Scholar
  43. 43.
    M. G. Krein, “Positive functionals on almost periodic functions,”Dokl. Acad. Nauk SSSR,30, No. 1, 9–12 (1941).Google Scholar
  44. 44.
    M. G. Krein, “On a generalization of the Plancherel theorem to the case of Fourier integrals on a commutative topological group,”Dokl. Acad. Nauk SSSR,30, No. 6, 482–486 (1941).Google Scholar
  45. 45.
    M. G. Krein, “On a general method of expansion of positive definite kernels in primary products,”Dokl. Acad. Nauk SSSR,53, No. 1, 3–6 (1946).Google Scholar
  46. 46.
    M. G. Krein, “The duality principle for a bicompact group and a square block algebra,”Dokl. Acad. Nauk SSSR,69, No. 6, 725–728 (1949).Google Scholar
  47. 47.
    M. G. Krein, “Hermitian positive kernels on homogeneous spaces. I,”Ukr. Mat. Zh.,1, No. 4, 64–98 (1949); II,Ibid.,2, No. 1, 10–59 (1950).Google Scholar
  48. 48.
    M. G. Krein and D. P. Mil'man, “On extreme points of regularly convex sets,”Stud. Math.,9, 133–138 (1940).Google Scholar
  49. 49.
    B. M. Levitan, “Theorems on representations of positive definite functions for operations of generalized shifts,”Dokl. Acad. Nauk SSSR,47, No. 3, 163–165 (1945).Google Scholar
  50. 50.
    B. M. Levitan, “The Plancherel theorem for an operation of generalized shift,”Dokl. Acad. Nauk SSSR,47, No. 5, 323–326 (1945).Google Scholar
  51. 51.
    B. M. Levitan, “The law of duality for an operation of generalized shift,”Dokl. Acad. Nauk SSSR,47, No. 6, 401–403 (1945).Google Scholar
  52. 52.
    B. M. Levitan,Theory of Operators of Generalized Shift [in Russian], Nauka, Moscow (1973).Google Scholar
  53. 53.
    G. L. Litvinov, “Hypergroups and algebras of hypergroups,” in:VINITI Series in Modern Problems of Mathematics [in Russian], Vol. 26, VINITI, Moscow (1985), pp. 57–106.Google Scholar
  54. 54.
    M. A. Naimark,Normed Rings [in Russian], Nauka, Moscow (1968).Google Scholar
  55. 55.
    A. Kh. Naziev,K *-Algebrasand Duality [in Russian], Author's Abstract of the Candidate Degree Thesis (Physics and Mathematics), Moscow (1988).Google Scholar
  56. 56.
    V. G. Palyutkin, “Invariant measure on a compact ring group,”Ukr. Mat. Zh.,18, No. 4, 49–59 (1966).Google Scholar
  57. 57.
    G. B. Podkolzin, “Infinitesimal algebras associated with a hypercomplex system with a basis SO(4)/SO(2),”Ukr. Mat. Zh.,42, No. 3, 427–429 (1990).Google Scholar
  58. 58.
    A. Ya. Povzner, “On a general Plancherel-type formula,”Dokl. Acad. Nauk SSSR,57, 123–125 (1947).Google Scholar
  59. 59.
    D. A. Raikov, “Harmonic analysis on commutative groups with Haar measure and the theory of characters,”Tr. Mat. Inst. Acad. Nauk SSSR,45, 1–86 (1945).Google Scholar
  60. 60.
    I. E. Segal, “Noncommutative generalization of abstract integration,” in:Mathematics. New Trends in Foreig¯n Science (A Collection of Translations [Russian translation],6, No. 1, 65–131 (1962).Google Scholar
  61. 61.
    W. F. Stinespring, “Theorems on integration with respect to a measure on projectors and the duality of unimodular groups,” in:Mathematics. New Trends in Foreign Science (A Collection of Translations [Russian translation],6, No. 2, 107–149 (1962).Google Scholar
  62. 62.
    R. R. Phelps,Lectures on Choquet's Theorem, Van Nostrand, New York, etc. (1966).Google Scholar
  63. 63.
    S. Helgason,Differential Geometry and Symmetric Spaces, Academic Press, New York, etc. (1962).Google Scholar
  64. 64.
    W. Hewitt and K. A. Ross,Abstract Harmonic Analysis, Springer, Berlin, Vol. 1 (1963), Vol. 2 (1970).Google Scholar
  65. 65.
    S. Bochner, “On a theorem of Tannaka and Krein,”Ann. Math,43, 56–58 (1942).Google Scholar
  66. 66.
    E. Cartan, “Sur la détermination d'une système orthogonal complète dans un espace de Riemann symmetrkique clos,”Rend. Circ. Mat. Palermo,53, 217–252 (1929);Ouvres Complète, Pt I, Gauthier-Villar, Paris (1952), pp. 1045–1080.Google Scholar
  67. 67.
    E. Cartan and R. Godement, “Théorie de la dualité et analyse harmonique dans les groupes abeliens localement compacts,”Ann. Sci. Ecole Nom. Supér.,64, 79–99 (1947).Google Scholar
  68. 68.
    M. Enock and J.-M. Schwartz, “Une dualité dans les algèbres de von Neumann,”C. R. Acad. Sci.,277, No. 14, 683–685 (1973);Bull. Soc. Math. France, Mem. 44, 1–144 (1975).Google Scholar
  69. 69.
    M. Enock and J.-M. Schwartz,Kac Algebras and Duality of Locally Compact Groups, Springer, Berlin-Paris (1992).Google Scholar
  70. 70.
    J. Ernest, “Hopf-von Neumann algebras,” in:Proceedings of the Conference on Functional Analysis, Academic Press, New York (1967), pp. 195–217.Google Scholar
  71. 71.
    P. Eymard, “L'algèbre de Fourier d'un groupe localement compact,”Bull. Soc. Math. France,92, No. 2, 181–236 (1974).Google Scholar
  72. 72.
    G. Hochschild,The Structure of Lie Groups, Holden-Day, San Francisco (1965).Google Scholar
  73. 73.
    J. L. Kelley, “Duality for compact groups,”Proc. Nat. Acad. Sci. USA,49, 457–458 (1963).Google Scholar
  74. 74.
    E. Kirchberg,Darstellungen Coinvolutioner Hopf W *-algebren und Ihre Anwendung in der Nicht-Abelschen Dualitats-Theorie Lokalkompakter Gruppen, Akademie der Wiss. der DDR, Berlin (1977).Google Scholar
  75. 75.
    A. E. Nussbaum, “Extension of positive definite functions and representation of functions in terms of spherical functions in symmeric spaces of non-compact type of rank 1,”Math. Ann.,215, 97–116 (1975).Google Scholar
  76. 76.
    K. A. Ross, “Hypergroups and centers of measure algebras,”Symp. Math. Inst. Naz. Alta Mat.,22, 189–203 (1977).Google Scholar
  77. 77.
    S. Sankaran, “Hochschild-Tannaka duality theorem for homogeneous space,”Rend. Semin, Mat. Univ., Politecn. Torino,36, 59–85 (1977–1978).Google Scholar
  78. 78.
    E. Segal, “An extension of Plancherel's formula to separable unimodular groups,”Ann. Math.,51, 293–298 (1951).Google Scholar
  79. 79.
    C. E. Sutherland, “Direct integral theory for weights and the Plancherel's formula,”Bull. Am. Math. Soc.,80, No. 3, 456–461 (1974).Google Scholar
  80. 80.
    M. Takesaki, “A characterization of group algebra as a converse of Tannaka-Stinespring-Tatsuuma duality theorem,”Am. J. Math.,91, No. 2, 529–564 (1969).Google Scholar
  81. 81.
    M. Takesaki, “Duality and von Neumann algebras,”Springer Lect. Notes Math.,247, 665–786(1972).Google Scholar
  82. 82.
    T. Tannaka, “Über der Dualitatssatz der Nichtkommutativen Topologischen Gruppen,”Tohoku Math. J.,53, 1–12 (1938).Google Scholar
  83. 83.
    N. Tatsuuma, “A duality theorem for a locally compact group. I,”Proc. Jpn. Acad.,41, No. 10, 878–882 (1965); II,Ibid,42, No. 1, 46–77 (1966); III,J. Math. Kyoto Univ.,6, No. 2, 187–203 (1967).Google Scholar
  84. 84.
    R. S. Vrem, “Harmonic analysis on compact hypergroups,”Pacif. J. Math.,85, No. 1, 239–251 (1979).Google Scholar
  85. 85.
    M. E. Walter, “W*-algebras and nonabelian harmonic analysis,”J. Funct. Anal.,11, No. 1, 239–251 (1972).Google Scholar
  86. 86.
    S. L. Woronowicz, “Compact matrix pseudogroups,”Comm. Math. Phys.,111, 613–665 (1987).Google Scholar
  87. 87.
    S. L. Woronowicz, “Tannaka-Krein duality for compact matrix pseudogroups. TwistedSU(N) groups,”Invent. Math. Phys.,93, 35–76 (1988).Google Scholar
  88. 88.
    Yu. M. Berezanskii and A. A. Kalyuzhnyi,Harmonic Analysis in Hypercomplex Systems [in Russian], Naukova Dumka, Kiev (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • L. I. Vainerman
    • 1
  1. 1.Kiev UniversityKiev

Personalised recommendations