Skip to main content
Log in

Physiologic modeling of cyclosporin kinetics in rat and man

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

A physiologic pharmacokinetic model of cyclosporin has been developed in the rat aimed at predicting the time course of drug concentrations in blood, organs, and tissues. The model assumes that tissue distribution is perfusion-rate limited and that each tissue acts as a well-stirred compartment. The unbound equilibrium distribution ratios as well as the values of the fraction unbound and the distributon isotherm of cyclosporin between erythrocytes and plasma are included in the rate equations describing the time course of the drug concentration in each tissue. Parameter values for the rat were obtained experimentally from a continuous infusion study, in which 2.7 and I3.9mg/kg per day doses of cyclosporin were administered subcutaneously to each of two groups of rats by osmotic pumps for 6 days. Steady-state cyclosporin concentrations in blood, CSF, and 18 different organs and tissues, were determined by a monoclonal antibody RIA. Differences in values of the unbound equilibrium distribution ratios in some tissues and unbound clearance indicated that both the processes of distribution and elimination may have elements of nonlinearity over the range of dosing rales tested. The model was evaluated in the rat with a kinetic experiment in which a 6-mg/kg dose of cyclosporin was infused intravenously over 15 min, with measurements of blood concentrations until 56 hr. Good agreement was obtained for the volume of distribution at steady state (blood), V xs between the perfusion model and that calculated from the kinetic experiment. Also, the model prediction of the blood concentration temporal profile agreed closely with that observed except in the early moments, when distribution out of blood occurred considerably slower than predicted. On scaling the model up to humans, good agreement was found between the predicted plasma concentration-time profile and V ss ,and experimental data from the literature. Both rat and human data suggest that partition into adipose tissue plays an important role in the pharmacokinetics of cyclosporin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Borel, C. Freurer, H. U. Gubler, and H. Staheiin. Biological effects of cyclosporin A: a new antilymphocytic agent.Agents Actions 6:468–475 (1976).

    Article  CAS  PubMed  Google Scholar 

  2. A. D. Hess and P. M. Colombani. Mechanism of action: In vitro studies. InCiclosporin. Progress in Allergy Vol. 38, S. Karger, Basel, 1986, pp. 198–221.

    Google Scholar 

  3. C. J. Green. Experimental transplantation. InCiclosporin. Progress in Allergy, Vol. 38, S. Karger, Basel, 1986, pp. 123–158.

    Google Scholar 

  4. T. Beveridge. Clinical transplantation—Overview. InCiclosporin. Progress in Allergy, Vol. 38, S. Karger, Basel, 1986, pp. 269–292.

    Google Scholar 

  5. R. B. Nussenblatt, H. C. Gunn, B. Ryffel, and J. F. Borel. Experimental autoimmunity. InCiclosporin. Progress in Allergy, Vol. 38, S. Karger, Basel, 1986, pp. 159–180.

    Google Scholar 

  6. B. V. Graffenried. Ciclosporin in autoimmune diseases. InCiclosporin. Progress in Allergy, Vol. 38, S. Karger, Basel, 1986, pp. 432–435.

    Google Scholar 

  7. S. K. Gupta, B. Legg, L. R. Solomon, R. W. G. Johnson, and M. Rowland. Pharmacokinetics of cyclosporin: Influence of rate of constant intravenous infusion in renal transplant patients.Br. J. Clin. Pharmacol. 24:519–526 (1987).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. F. Follath, M. Wenk, S. Vozeh, G. Thiel, F. Brunner, R. Loertscher, M. Lemaire, K. Nussbaumer, W. Niederberger, and A. J. Wood. Intravenous cyclosporin kinetics in renal failure.Clin. Pharmacol. Ther. 34:638–643 (1983).

    Article  CAS  PubMed  Google Scholar 

  9. O. Wagner, E. Schreier, F. Heitz, and G. Maurer. Tissue distribution, disposition, and metabolism of cyclosporin in rats.Drug Metab. Dispos. 15:377–383 (1987).

    CAS  PubMed  Google Scholar 

  10. K. Atkinson, J. Boland, K. Britton, and J. Biggs. Blood and tissue distribution of cyclosporin in humans and mice.Transpl. Proc. 15:2430–2449 (1983).

    CAS  Google Scholar 

  11. M. Ried, S. Gibbons, D. Kwok, C. T. Van Buren, S. Flechner, and B. D. Kahan. Cyclosporin levels in human tissues of patients treated for one week to one year.Transpl. Proc. 15:2434–2437 (1983).

    Google Scholar 

  12. G. Maurer, H. R. Loosly, E. Schreier, and B. Keller. Disposition of cyclosporin in several animal species and man. Structural elucidation of its metabolites.Drug Metab. Dispos. 12:120–126 (1984).

    CAS  PubMed  Google Scholar 

  13. A. J. Wood, G. Maurer, W. Niederberger, and T. Beveridge. Cyclosporin: Pharmacokinetics, metabolism, and drug interactions.Transpl. Proc. 15:2409–2412 (1983).

    CAS  Google Scholar 

  14. P. E. Ball, H. Munzer, H. P. Keller, E. Abisch, and J. Rosenthaler, Specific [3H]radioimmunoassay with a monoclonal antibody for monitoring cyclosporine in blood.Clin. Chem. 34:257–260 (1988).

    CAS  PubMed  Google Scholar 

  15. B. Legg and M. Rowland. Cyclosporin A: Measurement of fraction unbound in plasma.J. Pharm. Pharmacol. 39:599–603 (1987).

    Article  CAS  PubMed  Google Scholar 

  16. D. H. Jung, H. G. Biggs, and W. R. Moorehead. Colorimetry of serum cholesterol with use of ferric acetate/uranyl acetate and ferrous sulfate/sulphuric acid reagents.Clin. Chem. 21:1526–1530 (1975).

    CAS  PubMed  Google Scholar 

  17. M. Gibaldi and D. Perrier. (eds).Pharmacokinetics, 2nd ed., Marcel Dekker, New York, 1982.

    Google Scholar 

  18. K. S. Pang and M. Rowland. Hepatic clearance of drugs, I. Theoretical consideration of a “well stirred” and a “parallel tube” model. Influence of hepatic blood, plasma and blood binding and hepatocellular enzyme activity on hepatic drug clearance.J. Pharmacokin. Biopharm. 5:625–653 (1977).

    Article  CAS  Google Scholar 

  19. W. Niederberger, M. Lemaire, G. Maurer, K. Nussbaumer, and O. Wagner. Distribution and binding of cyclosporin in blood and tissues.Transpl. Proc. 15:2419–2421 (1983).

    CAS  Google Scholar 

  20. B. Legg and M. Rowland. Cyclosporin: Erythrocyte binding and an examination of its use to estimate unbound concentration.Theor. Drug Monit. 10:16–19 (1988).

    Article  CAS  Google Scholar 

  21. H. H. Donaldson.The rat. Data and Reference Tables, 2nd ed., Memoirs of the Wistar Institute of Anatomy and Biology, No. 6, Philadelphia, 1924, pp. 183–189.

    Google Scholar 

  22. Y. Igari, Y. Sugiyama, Y. Sawada, T. Iga, and M. Hanano. Prediction of diazepam disposition in the rat and man by a physiologically based pharmacokinetic model.J. Pharmacokin. Biopharm. 11:577–593 (1983).

    Article  CAS  Google Scholar 

  23. R. J. Lutz, R. L. Dedrick, H. B. Matthews, T. E. Eling, and M. W. Andersen. A preliminary pharmacokinetic model for several chlorinated biphenyls in the rat.Drug Metab. Dispos. 5:386–396 (1977).

    CAS  PubMed  Google Scholar 

  24. J. Idvall, K. F. Aronsen, and P. Stenberg. Tissue perfusion and distribution of cardiac output during ketamine anaesthesia in normovolemic rats.Acta Anaesth. Scand. 24:257–263 (1980).

    Article  CAS  PubMed  Google Scholar 

  25. Y. Sasaki and H. N. Wagner Jr. Measurement of the distribution of cardiac output in unanesthetized rats.J. Appl. Physiol. 30:879–884 (1971).

    CAS  PubMed  Google Scholar 

  26. A. Schoutens, P. Bergmann, and M. Verhas. Bone blood flow measured by85Sr microspheres and bone seeker clearances in the rat.Am. J. Physiol. 236:H1-H6 (1979).

    CAS  PubMed  Google Scholar 

  27. H. J. Baker, (ed.).The Laboratory Rat Vol. I. In American College of Laboratory Animal Medicine Series, Academic Press, New York, 1979, p. 87.

    Google Scholar 

  28. J. P. Schaeffer. (ed.).Morris' Human Anatomy, 11th ed. Blakiston, London, 1953.

    Google Scholar 

  29. V. Fiserova-Bergerova. (ed.).Modelling of Inhalation Exposure to Vapors, Vol. I, CRC Press, Boca Raton, FL, 1983, p. 88.

    Google Scholar 

  30. A. C. Guyton. (ed.).Textbook of Medical Physiology, W. B. Saunders, Philadelphia, 1966, p. 279.

    Google Scholar 

  31. R. L. Dedrick, D. D. Forrester, and D. H. W. Ho. In vitro-in vivo correlation of drug metabolism. Deamination of 1-beta-D-arabinofuranosylcytosine.Biochem. Pharmacol. 21:1–16 (1972).

    Article  CAS  PubMed  Google Scholar 

  32. G. Bell, J. N. Davidson, and H. Scarborough, (ed.).Textbook of Physiology and Biochemistry, 6th ed., Livingstone, London, 1965, p. 512.

    Google Scholar 

  33. M. Rowland and T. N. Tozer. (eds.).Clinical Pharmacokinetics: Concepts and Applications, 2nd ed., Lea & Febiger, Philadelphia, 1989, chap. 19.

    Google Scholar 

  34. B. Legg, S. K. Gupta, and M. Rowland. A model to account for the variation in cyclosporin binding to plasma lipids in transplant patients.Ther. Drug Monit. 10:20–27 (1988).

    Article  CAS  PubMed  Google Scholar 

  35. R. J. Ptachcinski, R. Venkataramanan, and G. J. Burckart. Clinical pharmacokinetics of cyclosporin.Clin. Pharmacokin. 11:107–132 (1986).

    Article  CAS  Google Scholar 

  36. J. K. Fazakorley and H. E. Webb. Cyclosporin, blood brain barrier, and multiple sclerosis.Lancet 2:889–890 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernareggi, A., Rowland, M. Physiologic modeling of cyclosporin kinetics in rat and man. Journal of Pharmacokinetics and Biopharmaceutics 19, 21–50 (1991). https://doi.org/10.1007/BF01062191

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01062191

Key words

Navigation