Skip to main content
Log in

The deformation behavior of NiO scales on Ni in argon and air at temperatures from 20 to 800°C with respect to the relief of growth stresses

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Stresses formed in oxide scales due to oxide growth are usually of a compressive nature, and there is still some debate on how these stresses are accommodated. While the deformation behavior of oxide scales under tensile stresses can be regarded as fairly well understood, there are many open questions concerning scale deformation and cracking under compressive straining. Therefore, the NiO scale formed on two different grades of Ni was chosen as a model system for compression tests with strain rates ranging from 8×10−4 to 8×10−8 s−1 in the temperature range of 20 to 800°C. Test environments were air and argon, and accompanying acoustic-emission measurements were taken in order to detect the beginning of oxide-scale cracking during straining. As a result the critical-strain values at the beginning of mechanical-scale damage could be determined quantitatively and explained consistently by model considerations. Furthermore, SEM and TEM investigations, backed up by sulfur decoration of microcracks at the end of the tests, revealed that at elevated temperatures a major deformation mechanism under these conditions takes the form of dynamic equilibrium of continuous microcracking with superimposed oxide-healing processes, making compressive strains of 10% and more possible without macroscopic scale failure. It is, therefore, assumed that a major mechanism of growth stress relief in oxide scales occurs via microcracking and scalecrack healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Grünling, B. Ilschner, S. Leistikow, A. Rahmel, and M. Schmidt inBehaviour of High Temperature Alloys in Aggressive Environments, I. Kirman et al., eds. (The Metals Society, London, 1980), p. 869.

    Google Scholar 

  2. N. B. Pilling and R. E. Bedworth,J. Inst. Met. 29, 529 (1923).

    Google Scholar 

  3. H. L. Bernstein,Met. Trans. A 18, 975 (1987).

    Google Scholar 

  4. F. N. Rhines and J. S. Wolf,Met. Trans. 1, 1701 (1970).

    Google Scholar 

  5. Zhou Peide, F. H. Stott, R. P. M. Procter, and W. A. Grant,Oxid. Met. 16, 409 (1981).

    Google Scholar 

  6. A. Atkinson, R. I. Taylor, and P. D. Goode,Oxid. Met. 13, 519 (1979).

    Google Scholar 

  7. A. Atkinson and D. W. Smart, Harwell Report AERE R 12762, United Kingdon Energy Authority, Harwell, 1987.

    Google Scholar 

  8. A. Brinkmann, R. Emmerich, and S. Mrowec,Oxid. Met. 5, 137 (1972).

    Google Scholar 

  9. D. G. Barnes, J. M. Calvert, K. A. May, and D. G. Lees,Phil. Mag. 28, 1303 (1973).

    Google Scholar 

  10. D. Caplan and G. I. Sproule,Oxid. Met. 9, 459 (1975).

    Google Scholar 

  11. G. M. Ecer and G. H. Meier,Oxid. Met. 13, 119 (1979).

    Google Scholar 

  12. K. P. Lillerud and P. Kofstad,J. Electrochem. Soc. 127, 2397 (1980).

    Google Scholar 

  13. P. Kofstad and K. P. Lillerud,J. Electrochem. Soc. 127, 2410 (1980).

    Google Scholar 

  14. F. A. Golightly, F. H. Stott, and G. C. Wood,Oxid. Met. 10, 163 (1976).

    Google Scholar 

  15. F. A. Golightly, G. C. Wood, and F. H. Stott,Oxid. Met. 14, 217 (1978).

    Google Scholar 

  16. R. G. Miner and V. Nagarajan,Oxid. Met. 16, 313 (1981).

    Google Scholar 

  17. M. Schütze and A. Rahmel, inHigh Temperature Corrosion, R. A. Rapp, ed. (NACE, Houston, 1983) p. 421.

    Google Scholar 

  18. M. I. Manning,Corros. Sci. 21, 301 (1981).

    Google Scholar 

  19. M. Schütze,Die Korrosionsschutzwirkung oxidischer Deckschichten unter thermischchemisch-mechanischer Werkstoffbeanspruching, (Gebr. Borntraeger Verlag, Berlin, 1992).

    Google Scholar 

  20. M. Schütze,Oxid. Met. 24, 199 (1985).

    Google Scholar 

  21. J. Barbehön, VDI-Fortschrittsbericht Nr. 138 Reihe 5, VDI-Verlag, Düsseldorf, 1988.

    Google Scholar 

  22. P. Hancock and J. P. Nicholls,Mater. Sci. Technol. 4, 398 (1988).

    Google Scholar 

  23. M. Walter, A. Rahmel, and M. Schütze,Oxid. Met. 39, 389 (1993).

    Google Scholar 

  24. M. Walter, A. Rahmel, and M. Schütze,Oxid. Met. 40, 37 (1993).

    Google Scholar 

  25. M. Schütze,Mater. Sci. Technol. 6, 32 (1990).

    Google Scholar 

  26. M. Schütze,Oxid. Met. 25, 409 (1986).

    Google Scholar 

  27. W. Christl, A. Rahmel, and M. Schütze,Oxid. Met. 31, 35 (1989).

    Google Scholar 

  28. W. Christl, A. Rahmel, and M. Schütze,Oxid. Met. 31, 1 (1989).

    Google Scholar 

  29. M. Schütze, inHigh Temperature Corrosion of Advanced Materials and Protective Coatings, Y. Saito et al., eds. (North-Holland, Amsterdam, 1992), p. 39.

    Google Scholar 

  30. C. Liu, Thèse de Doctorat, ENSAM, Paris, 1991.

  31. Manufacturer's Catalogue 1990/91, Goodfellow, Eschborn.

  32. I. Küppenbender, Doctoral Thesis, Rheinisch-Westfälische Technische Hochschule, Aachen, 1993.

  33. J. Robertson and M. I. Manning,Mater. Sci. Technol. 6, 81 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Küppenbender, I., Schütze, M. The deformation behavior of NiO scales on Ni in argon and air at temperatures from 20 to 800°C with respect to the relief of growth stresses. Oxid Met 42, 109–144 (1994). https://doi.org/10.1007/BF01061927

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01061927

Key Words

Navigation