Skip to main content
Log in

Numerical deconvolution using system identification methods

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

A deconvolution method is presented for use in pharmacokinetic applications involving continuous models and small samples of discrete observations. The method is based on the continuous-time counterpart of discrete-time least squares system identification, well established in control engineering. The same technique, requiring only the solution of a linear regression problem, is used both in system identification and input identification steps. The deconvolution requires no a prioriinformation, since the proposed procedure performs system identification (including optimal selection of model order), selects the form of the input function and calculates its parametric representation and its values at specified time points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Langenbucher. Numerical convolution/deconvolution as a tool for correlating in vitro with in vivo drug availability.Pharm. Ind. 44:1166–1172 (1982).

    CAS  Google Scholar 

  2. F. Langenbucher. Improved understanding of convolution algorithms correlating body response with drug input.Pharm. Ind. 44:1275–1278 (1982).

    Google Scholar 

  3. F. Langenbucher and H. Möller. Correlation of in vitro drug release with in vivo response kinetics. Part 1: Mathematical treatment of time functions. Part 2: Use of function parameters.Pharm. Ind. 45:623–628; 629–633 (1983).

    CAS  Google Scholar 

  4. B. R. Hunt. Biased estimation for nonparametric identification of linear systems.Math. Biosci. 10:215–237 (1971).

    Article  Google Scholar 

  5. N. D. Crump. A Kaiman filter approach to the deconvolution of seismic signals.Geophysics 39:1–13 (1974).

    Article  Google Scholar 

  6. A. Rescigno and G. Segre.Drug and Tracer Kinetics, Blaisdell, Waltham, MA, 1966.

    Google Scholar 

  7. D. P. Vaughan and M. Dennis. Mathematical basis of point-area deconvolution method for determining in vivo input functions.J. Pharm. Sci. 67:663–665 (1978).

    Article  CAS  PubMed  Google Scholar 

  8. D. J. Cutler. Numerical deconvolution by least squares: Use of prescribed input functions.J. Pharmacokin. Biopharm. 6:227–241 (1978).

    Article  CAS  Google Scholar 

  9. D. J. Cutler. Numerical deconvolution by least squares: Use of polynomials to represent the input function.J. Pharmacokin. Biopharm. 6:243–263 (1978).

    Article  CAS  Google Scholar 

  10. P. Veng-Pedersen. Model-independent method of analysing input in linear pharmacokinetic systems having polyexponential impulse response. Part 1: Theoretical analysis. Part 2: Numerical evaluation.J. Pharm. Sci. 69:298–305; 305–312 (1980).

    Article  CAS  Google Scholar 

  11. P. Veng-Pedersen. Novel deconvolution method for linear pharmacokinetic systems with polyexponential impulse response.J. Pharm. Sci. 69:312–318 (1980).

    Article  CAS  Google Scholar 

  12. P. Veng-Pedersen. An algorithm and computer program for deconvolution in linear pharmacokinetics.J. Pharmacokin. Biopharm. 8:463–481 (1980).

    Article  CAS  Google Scholar 

  13. R. C. Dorf.Modern Control Systems, 4th ed. Addison-Wesley, Reading, MA., 1986.

    Google Scholar 

  14. D. Phillips. A technique for the numerical solution of certain integral equations of the first kind.J. Assoc. Comput. Mach. 9:97–101 (1962).

    Article  Google Scholar 

  15. B. Hunt. The inverse problem of radiography.Math. Biosci. 8:161–179 (1970).

    Article  Google Scholar 

  16. H. Akaike. Canonical correlation analysis of time series and the use of an information criterion. In R. K. Mehra and D. G. Lainiotis (eds.),System Identification: Advances and Case Studies, Academic Press, New York, 1976, pp. 27–96.

    Chapter  Google Scholar 

  17. J. P. Norton.An Introduction to Identification, Academic Press, New York, 1986.

    Google Scholar 

  18. N. E. Greville.Spline Functions, Interpolation and Numerical Quadrature, Wiley, New York, 1967.

    Google Scholar 

  19. S. D. Foss. A method of exponential curve fitting by numerical integration.Biometrics 26:815–821 (1970).

    Article  Google Scholar 

  20. D. M. Himmelblau, C. R. Jones, and K. B. Bischoff. Determination of rate constants for complex kinetics models.Ind. Eng. Chem. Fund,6:539–543 (1967).

    Article  CAS  Google Scholar 

  21. N. K. Sinha and Z. Qijie. Identification of continuous-time systems from sampled data: a comparison of 3 direct methods. InPreprints of the 7th IFAC Symposium on Identification and System Parameter Estimation, Pergamon Press, Oxford, 1985, pp. 1575–1578.

    Google Scholar 

  22. S. Vajda, P. Valko, and A. Yermakova. A multistage parameter estimation procedure for continuous systems. InPreprints of the 7th IFAC Symposium on Identification and System Parameter Estimation, Pergamon Press, Oxford, 1985, pp. 1579–1584.

    Google Scholar 

  23. A. H. Whitfield and N. Messali. Integral equation approach to system identification.Int. J. Control 45:1431–1445 (1987).

    Article  Google Scholar 

  24. S. Vajda, P. Valko, and K. R. Godfrey. Direct and indirect least squares methods in continuous-time parameter estimation.Automatica 23:707–718 (1987).

    Article  Google Scholar 

  25. S. Vajda, P. Valko, and A. Yermakova. A direct-indirect method for estimating kinetic parameters.Comput. Chem. Eng. 10:49–58 (1986).

    Article  CAS  Google Scholar 

  26. V. Strejc. Least squares parameter estimation.Automatica 16:535–550 (1980).

    Article  Google Scholar 

  27. P. Stoica and T. Söderström. On the parisomony principle.Int. J. Control 36:409–418 (1982).

    Article  Google Scholar 

  28. H. Akaike. A new look at the statistical model identification.IEEE Trans. Autom. Control 19:716–723 (1974).

    Article  Google Scholar 

  29. J. M. Edmunds. Model order determination for state space control design methods.Int. J. Control 41:941–946 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Eötvös Lorand University, Budapest, Hungary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vajda, S., Godfrey, K.R. & Valko, P. Numerical deconvolution using system identification methods. Journal of Pharmacokinetics and Biopharmaceutics 16, 85–107 (1988). https://doi.org/10.1007/BF01061863

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01061863

Key words

Navigation