On the transformation technique in pharmacokinetic curve fitting

  • John D. Holt
  • William D. Black


It is shown that when one nonlinear regression model is a reparametrization of a second model, the parameter estimates, and their standard errors, for one model can be obtained directly from those obtained from fitting the other model.

Key words

nonlinear regression parameter estimation invariance transformation pharmacokinetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. V. Pedersen. Curve fitting and modeling in pharmacokinetics and some practical experiences with NONLIN and a new program called FUNFIT.J. Pharmacokin. Biopharm. 5:513–531 (1977).CrossRefGoogle Scholar
  2. 2.
    D. Wong, W. A. Colburn, and M. Gibaldi. Fitting concentration-time data to biexponential equations.J. Pharmacokin. Biopharm. 7:97–100 (1979).CrossRefGoogle Scholar
  3. 3.
    C. R. Rao.Linear Statistical Inference and Its Applications, 2nd ed. John Wiley & Sons, New York, 1973, p. 338.CrossRefGoogle Scholar
  4. 4.
    R. S. Jennrich and M. L. Ralston. Fitting nonlinear models to data.Annu. Rev. Biophys. Bioeng. 8:195–238 (1979).PubMedCrossRefGoogle Scholar
  5. 5.
    Y. Bard.Nonlinear Parameter Estimation. Academic Press, New York, 1974, pp. 176–179.Google Scholar
  6. 6.
    S. Zacks.The Theory of Statistical Inference. John Wiley & Sons, New York, 1971, pp. 222–227.Google Scholar
  7. 7.
    R. S. Jennrich. Asymptotic properties of non-linear least squares estimators.Ann. Math. Stat. 40:633–643 (1969).CrossRefGoogle Scholar
  8. 8.
    C. M. Metzler, G. L. Elfring, and A. J. McEwen. A package of computer programmes for pharmacokinetic modelling.Biometrics 30:562 (1974).CrossRefGoogle Scholar
  9. 9.
    E. C. Frome and G. J. Yakatan. Statistical estimation of the pharmacokinetic parameters in the one compartment open model.Commun. Stat.-Simul. Comput. 9:201–222 (1980).CrossRefGoogle Scholar
  10. 10.
    R. W. M. Wedderburn. Quasi-likelihood functions, generalized linear models and the Gauss-Newton method.Biometrika 61:439–447 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • John D. Holt
    • 1
  • William D. Black
    • 2
  1. 1.Department of Mathematics and StatisticsUniversity of GuelphGuelph
  2. 2.Department of Biomedical SciencesUniversity of GuelphGueiph

Personalised recommendations