Skip to main content
Log in

Fundamental pharmacokinetic limits on the utility of using a sinusoidal drug delivery system to enhance therapy

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Clinically, it is known that some disease states respond to drug treatment in a cyclic manner. This has resulted in qualitatively, or empirically, determined cyclically varying drug treatment studies which have been shown to improve therapeutic response in some cases. A theory is developed, for drugs that can be described by pure catenary pharmacokinetic models, which enables one to quantitatively determine at what time a cyclic infusion of drug should be initiated, what the frequency of infusion should be, and what the amplitude of the infusion should be to obtain maximum therapeutic benefit at steady state. Also, the theory allows one to determine quantitatively a priori if a drug's pharmacokinetics precludes the possibility of any real advantage to be gained by cyclically infusing the drug. To implement the theory, it is assumed that the drug obeys linear pharmacokinetics and that the desired pharmacological response is rapid and approximately proportional to a pharmacokinetic compartmental concentration. In particular, a linear system analysis approach is applied to drugs obeying linear pharmacokinetics. It is found that at steady state the amplitude, of the sinusoidally varying component of drug's compartmental concentration can be expressed as the amplitude of the rate of infusion times the magnitude of the compartment's transfer function. In addition, an expression for the shift in phase (lag time) of the compartmental drug concentration, relative to the input infusion, is obtained. For a one-compartment model, or for a compartment containing the site of infusion, the amplitude of the sinusoidally varying component ultimately declines in direct proportion to the period (T) of oscillation and the lag time increases from 0 to −0.25T as the period decreases. At a short enough cyclic infusion period, the lag time increments by an additional value of −0.25T, and the attenuation in sinusoidal amplitude decreases by an additional factor of T, for each compartment sequentially connected down the chain from the compartment receiving the infusion. This theory is then applied to the drugs, 5- fluorouracil, KS1/4- DAVLB, theophylline, and adriamycin to see if sinusoidal modulation of the infusion rate would be of therapeutic benefit. The theoretical predictions are then compared to clinically determined empirical results and shown to be consistent. In general, it is shown that the micro rate constants describing the drug's pharmacokinetics must be large (i.e., the system must be able to respond rapidly) for sinusoidal infusion to be of value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Reinberg (ed.).Clinical Chronopharmacology: Concepts, Kinetics, Application, Hemisphere, New York, 1990.

    Google Scholar 

  2. J. Arendt, D. S. Minors, and J. M. Waterhouse (eds.).Biological Rhythms in Clinical Practice, Wright, London, 1989.

    Google Scholar 

  3. C. Focan. Sequential chemotherapy and circadian rhythm in solid tumors-A randomized trial.Cancer Chemother. Pharmacol. 3:197–202 (1979).

    Article  CAS  PubMed  Google Scholar 

  4. W. J. M. Hrushesky. Circadian timing of cancer chemotherapy.Science 228:73–75 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. M. H. Smolensky. Clinical chronopharmacology-bronchodilators with special reference to sustained-release theophylline. In A. Reinberg (ed.),Clinical Chronopharmacology: Concepts, Kinetics, Application, Hemisphere, New York, 1990, pp. 119–176.

    Google Scholar 

  6. E. Haus, F. Halberg, J. E. Pauly, S. Cardoso, J. F. W. Kuhl, R. B. Sothern, R. N. Shiotsuka, and D. S. Hwang. Increased tolerance of leukemic mice to arabinosyl cytosine with schedule adjusted to circadian system.Science 177:80–82 (1972).

    Article  CAS  PubMed  Google Scholar 

  7. L. E. Scheving, E. Haus, J. F. W. Kuhl, J. E. Pauly, F. Halberg, and S. Cardoso. Close reproduction of different laboratories of characteristics of circadian rhythm in 1-β-D-arabinofuranosylcytosine tolerance by mice.Cancer Res. 36:1133–1137 (1976).

    CAS  PubMed  Google Scholar 

  8. F. Levi, F. Halberg, M. Nesbit, E. Haus, and H.Levine. Chronooncology. In H. E. Kaiser (ed.),Neoplasms-Comparative Pathology of Growth in Animals, Plants, and Man, Willims and Wilkins, Baltimore.

  9. R. V. Roemeling and W. J. M. Hrushesky. Circadian pattern of continuous FDUR infusion reduces toxicities. InAdvances in Chronobiology Part B. Proceedings of the XVIIth International Conference of the International Society for Chronobiology, Alan R. Liss, New York, 1987, pp. 357–373.

    Google Scholar 

  10. J. P. Caussanel, F. Levi, J. L. Misset, A. Descorps Declere, R. Adam, H. Bismuth, A. Reinberg, and G. Mathe. Chronotherapy of patients with metastatic colorectal cancer with 5-fluorouracil (5-FU) and Oxaliplatin (1-OHP), automatically delivered via a programmable external pump. Preliminary results. In A. Reinberg, M. Smolensky, and G. Labrecque (eds.),Annual Review of Chronopharmacology, Vol. 5, Pergamon, New York, 1988, pp. 403–406.

    Google Scholar 

  11. M. E. Van Valkenberg.Network Analysis, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1964, pp. 322–323.

    Google Scholar 

  12. C. L. Phillips and R. D. Harbor.Feedback Control Systems, Prentice-Hall, Englewood Cliffs, NJ, 1988, pp. 32–35.

    Google Scholar 

  13. D. J. Cutler. Linear systems analysis in pharmacokinetics.J. Pharmacokin. Biopharm,6:265–282 (1978).

    Article  CAS  Google Scholar 

  14. M. E. Van Valkenberg.Network Analysis, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1964, pp. 159–187.

    Google Scholar 

  15. B. P. Lathi.Signals, Systems and Communication, Wiley, New York, 1965, pp. 1–43.

    Google Scholar 

  16. L. Z. Benet. General treatment of linear mammillary models with elimination from any compartment as used in pharmacokinetics.J. Pharm. Sci. 61:536–541 (1972).

    Article  CAS  PubMed  Google Scholar 

  17. E. Kreyszig.Advanced Engineering Mathematics, 2nd ed., Wiley, New York, 1967, pp. 204–208.

    Google Scholar 

  18. E. Kreyszig.Advanced Engineering Mathematics, 2nd ed., Wiley, New York, 1967, p. 22.

    Google Scholar 

  19. G. B. Thomas and R. L. Finney.Calculus and Analytic Geometry, Addison-Wesley, Reading, MA, 1988, pp. 713–714.

    Google Scholar 

  20. P. G. Welling.Pharmacokinetics Processes and Mathematics, ACS Monograph 185, American Chemical Society, Washington, DC, 1986, p. 223.

    Google Scholar 

  21. M. Rowland and T. N. Tozer.Clinical Pharmacokinetics Concepts and Applications, Lea and Febiger, Philadelphia, PA, 1989, p. 71.

    Google Scholar 

  22. J. G. Wagner.Fundamentals of Clinical Pharmacokinetics. Drug Intelligence Publications, Hamilton, Illinois, 1975, pp. 90–94.

    Google Scholar 

  23. J. M. Collins, R. L. Dedrick, F. G. King, J. L. Speyer, and C. E. Myers. Nonlinear pharmacokinetic models for 5-fluorouracil in man: Intravenous and intraperitoneal routes.Clin. Pharmacol. Ther. 28:235–246 (1980).

    Article  CAS  PubMed  Google Scholar 

  24. D. Schneck, F. Butler, W. Dugan, D. Littrell, B. Petersen, R. Bowsher, A. DeLong, and S. Dorrbecker. Disposition of murine monoclonal antibody vinca conjugate (KS1/ 4-DAVLB) in patients with adenocarcinomas.Clin. Pharmacol. Ther. 47:36–41 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. P. A. Mitenko and R. I. Ogilvie. Pharmacokinetics of intravenous theophylline.Clin. Pharmacol. Ther. 14:509–513 (1973).

    CAS  PubMed  Google Scholar 

  26. R. F. Greene, J. M. Collins, J. F. Jenkins, J. L. Speyer, and C. E. Myers. Plasma Pharmacokinetics of adriamycin and adriamycin and adriamycinol: Implications in the design of in vitro experiments and treatment protocols.Cancer Res. 43:3417–3421 (1983).

    CAS  PubMed  Google Scholar 

  27. P. A. J. Speth, P. C. M. Linssen, R. S. G. Holdrinet, and C. Haanen. Plasma and cellular adriamycin concentrations in patients with myeloma treated with a ninety-six hour continuous infusion.Clin. Pharmacol. Ther. 41:661–665 (1987).

    Article  CAS  PubMed  Google Scholar 

  28. P. Calabresi and B. R. Chabner. Antineoplastic agents. In A. G. Gilman, T. W. Rall, A. S. Nies, and G. Taylor (eds.),Goodman and Gilman's The Pharmacological Basis of Therapeutics, Pergamon, New York, 1990, pp. 1202–1263.

    Google Scholar 

  29. C. P. Spears, A. H. Shanhinian, R. G. Moran, C. Heideberger, and T. H. Corbett. In vivo kinetics of thymidylate synthetase inhibition in 5-fluorouracil sensitive and resistant murine colon adenocarcinomas.Cancer Res. 42:450–456 (1982).

    CAS  PubMed  Google Scholar 

  30. G. J. Peters, J. V. Diijk, J. C. Nadall, C. J. V. Groeningen, J. Lankelma, and H. M. Pinedo. Diurnal variation in the therapeutic efficacy of 5-fluorouracil against murine colon cancer.In Vivo 1:113–118 (1987).

    CAS  PubMed  Google Scholar 

  31. P. A. Mitenko and R. I. Ogilvie. Rational intravenous doses of theophylline.New Engl. J. Med. 289:600–603 (1973).

    Article  CAS  PubMed  Google Scholar 

  32. P. A. J. Speth, Q. G. C. M. van Hoesel, and C. Haanen. Clinical pharmacokinetics of doxorubicin.Clin. Pharmacokin. 15:15–31 (1988).

    Article  CAS  Google Scholar 

  33. L. Z. Benet and R. L. Williams. Appendix II-Design and optimization of dosage regimens: Pharmacokinetic data. In A. G. Gilman, T. W. Rall, A. S. Nies, and P. Taylor (eds.),Goodman and Gilman's The Pharmacological Basis of Therapeutics, Pergamon, New York, 1990, pp. 1650–1735.

    Google Scholar 

  34. M. Rowland and T. N. Tozer.Clinical Pharmacokinetics Concepts and Applications, 2nd ed., Lea and Febiger, Philadelphia, PA, 1989, pp. 113–130.

    Google Scholar 

  35. G. Levy. Chronotherapeutics pharmacokinetic constraints and opportunities. InTemporal Control of Drug Delivery, Ann. N.Y. Acad. Sci. 618:116–122 (1991).

    Article  CAS  Google Scholar 

  36. F. Theeuwes and W. Bayne. Controlled-release dosage form design. In J. Urquhart (eds.),Controlled-Release Pharmaceuticals, American Pharmaceutical Association, Academy of Pharmaceutical Sciences, Washington, D.C., 1981, pp. 61–93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burnette, R.R. Fundamental pharmacokinetic limits on the utility of using a sinusoidal drug delivery system to enhance therapy. Journal of Pharmacokinetics and Biopharmaceutics 20, 477–500 (1992). https://doi.org/10.1007/BF01061467

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01061467

Key words

Navigation