Skip to main content
Log in

Salbutamol disposition and dynamics in conscious rabbits: Influence of the route of administration and of the dose

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

This study assessed the influence of dose and route of administration on salbutamol kinetics and hypokaliemic effect. Salbutamol plasma kinetics were studied in a first group of 6 rabbits who received 60, 800, and 60 μg/kg by the intravenous (iv), oral (po), and intratracheal (it) routes, respectively, at 1-week intervals. A second group of 6 rabbits received 120, 2400, and 120 μg/kg of salbutamol by the same three routes. Multiple blood samples were withdrawn to assay salbutamol and potassium. Following iv salbutamol (60 μg/kg), total plasma clearance was 82±5 ml/min per kg, apparent volume of distribution was 5.0±0.5 l/kg, and terminal half- life was 41±2 min. Similar values were estimated when 120 μg/kg of salbutamol was administered iv or was given po or it. The bioavailability of po and it salbutamol was approximately 1 and 20%, respectively. For the first group, the maximal decrease in plasma potassium elicited by salbutamol was 0.80±0.19, 0.48±0.22, and 0.78±0.46 mmol/l, and for the second group, maximal decrement was 1.31±0.37, 0.70±0.24, and 0.84±0.17 mmol/l for the iv, po, and it routes, respectively. Compared to salbutamol peak plasma concentrations, maximal decrease in plasma potassium appeared between 60 and 108 min later for the iv route, 90 and 25 min later for po and it routes, and for this reason, the hypokaliemic effect was not associated to salbutamol plasma concentrations. The hypokaliemic effect was dependent upon the route, e.g., po>it>iv. It is concluded that (i) salbutamol plasma kinetics are first-order independently of the route of administration, and (ii) salbutamol hypokaliemic effect is modulated by the dose and the route of administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AUC :

Area under salbutamol plasma concentration-time curve

clINT :

Salbutamol intrinsic clearance

clT :

Salbutamol total plasma clearance

cMAX :

Salbutamol maximal plasma concentration

F :

Fraction of the dose of salbutamol reaching the systemic circulation

iv:

Intravenous route of administration

it:

Intratracheal route of administration

po:

Oral route of administration

Varea :

Salbutamol apparent volume of distribution

T 12 :

Salbutamol half-life of the terminal phase

tMAX :

Time to observe the maximal decrease in plasma potassium

eMAX :

Predicted maximal effect of salbutamol

EC50 :

Concentration of salbutamol eliciting 50% of eMAX

References

  1. K. N. V. Palmer and J. C. Petrie. Respiratory diseases. In Avery, G. S. (ed.),Drug Treatment, Principles and Practice of Clinical Pharmacology and Therapeutics, Adis, Sydney, 1980, pp. 760–799.

    Google Scholar 

  2. D. J. Morgan, J. D. Paull, B. H. Richmond, E. Wilson-Evered, and S. P. Ziccone. Pharmacokinetics of intravenous and oral salbutamol and its sulphate conjugate.Br. J. Clin. Pharmacol. 22:587–593 (1986).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. R. C. Ahrens and G. D. Smith. Albuterol: An adrenergic agent for use in the treatment of asthma. Pharmacology, pharmacokinetics and clinical use.Pharmacotherapy 4:105–120 (1984).

    CAS  PubMed  Google Scholar 

  4. H. W. Kelly and G. D. Smith. Asthma. In B. S. Katcher, L. Y. Young, and M. A. Koda-Kimble (eds.),Applied Therapeutics, Applied Therapeutics, San Francisco, 1989, pp. 361–391.

    Google Scholar 

  5. R. Jonkers, C. J. Van Boxtel, and B. Oosterhuis. Beta2-adrenoceptor-mediated hypokaliemia and its abolishment by oxprenolol.Clin. Pharmacol. Ther. 42:627–633 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. A. S. Rohr, L. Sheldon, G. S. Racheledsky, M. Kratz, and S. C. Siegel. Efficacy of parenteral albuterol in the treatment of asthma, comparison of its metabolic side effects with subcutaneous epinephrine.Chest 89:348–356 (1986).

    Article  CAS  PubMed  Google Scholar 

  7. A. Neville, J. B. D. Palmer, C. S. May, K. N. V. Palmer, and I. E. Murchison. Metabolic effects of salbutamol: comparison of aerosol and intravenous administration.Br. Med. J. 1:413–414 (1977).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. M. Scheinin, M. Koulu, E. Laurikainen, and H. Allonen. Hypokalaemia and other nonbronchial effects of inhaled fenoterol and salbutamol: A placebo controlled dose-response study in healthy volunteers.Br. J. Clin. Pharmacol. 24:645–653 (1987).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. J. C. K. Loo, N. Beaulieu, N. Jordan, and R. Brien. A specific radio-immunoassay (RIA) for salbutamol (albuterol) in human plasma.Res. Commun. Chem. Pathol. Pharmacol. 55:283–286 (1987).

    CAS  PubMed  Google Scholar 

  10. H. Ong, A. Adam, S. Perreault, S. Marleau, M. Bellemare, and P. du Souich. Analysis of albuterol in human plasma based on immunoaffinity chromatography clean-up combined with high-performance liquid chromatography with fluorimetric detection.J. Chromatog. 497:213–221 (1989).

    Article  CAS  Google Scholar 

  11. C. M. Metzler and D. L. Wiener.PC-NONLIN, Statistical Consultants, Lexington, KY, 1985.

    Google Scholar 

  12. M. Gibaldi and D. Perrier. Multicompartmental models. In M. Gibaldi and D. Perrier (eds.),Pharmacokinetics, Marcel Dekker, New York, 1982, pp. 45–111.

    Google Scholar 

  13. M. Gibaldi and D. Perrier. One compartment model. In M. Gibaldi and D. Perrier (eds.),Pharmacokinetics, Marcel Dekker, New York, 1982, pp. 1–43.

    Google Scholar 

  14. H. G. N. Holford and L. B. Sheiner. Understanding the dose-effect relationship: clinical application of pharmacokinetic pharmacodynamic models.Clin. Pharmacokin. 6:429–453 (1981).

    Article  CAS  Google Scholar 

  15. B. J. Winer.Statistical Principles in Experimental Design, McGraw-Hill, New York, 1971, pp. 149–257.

    Google Scholar 

  16. S. Marleau, H. Ong, L. Gariepy, and P. du Souich. Lidocaine and indocyanine green kinetics: Effect of hypoxemia and/or hypercapnia.J. Pharmacol. Exp. Ther. 242:338–343 (1987).

    CAS  PubMed  Google Scholar 

  17. M. E. Evans, S. R. Walker, R. T. Brittain, and J. W. Paterson. The metabolism of salbutamol in man.Xenobiotica 3:113–120 (1973).

    Article  CAS  PubMed  Google Scholar 

  18. L. E. Martin, J. C. Hobson, J. A. Page, and C. Harrison. Metabolic studies of 3H-salbutamol: a new bronchodilator in rat, rabbit, dog and man.Ear. J. Pharmacol. 14:183–199 (1971).

    Article  CAS  Google Scholar 

  19. S. R. Walkers, M. E. Evans, A. J. Richards, and J. W. Paterson. The clinical pharmacology of oral and inhaled salbutamol.Clin. Pharmacol. Ther. 13:861–867 (1972).

    Google Scholar 

  20. M. E. Conolly, D. S. Davies, C. T. Dollery, C. D. Morgan, J. W. Paterson, and M. Sandier. Metabolism of isoprenaline in dog and in man.Br. J. Pharmacol. 46:458–472 (1972).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. D. S. Davies, C. F. Georges, E. Blackwell, M. E. Conolly, and C. T. Dollery. Metabolism of terbutaline in man and in dog.Br. J. Clin. Pharmacol. 1:129–136 (1974).

    Article  PubMed Central  PubMed  Google Scholar 

  22. C. Lin, Y. Li, J. McGlotten, J. B. Morton, and S. Synchowicz. Isolation and identification of the major metabolites of albuterol in human urine.Drug Metab. Dispos. 5:234–238 (1977).

    CAS  PubMed  Google Scholar 

  23. C. F. Georges, E. W. Blackwell, and D. S. Davies. Metabolism of isoprenaline in the intestine.J. Pharm. Pharmacol. 26:265–267 (1974).

    Article  Google Scholar 

  24. W. D. Conway, S. M. Singhvi, M. Gibaldi, and R. N. Boyes. The effect of route of administration on the metabolic fate of terbutaline in the rat.Xenobiotica 3:813–821 (1973).

    Article  CAS  PubMed  Google Scholar 

  25. H. J. Dengler and J. H. Hengstmann. Metabolism and pharmacokinetics of orciprenaline in various animal species and man.Arch. Int. Pharmacodyn. 233:71–87 (1976).

    Google Scholar 

  26. A. S. Koster, A. C. Frankhuijzen-Sievevogel, and J. Noordhoek. Glucuronidation of morphine and sixβ-sympathomimetics in isolated rat intestinal epithelial cells.Drug. Metab. Dispos. 13:232–238 (1985).

    CAS  PubMed  Google Scholar 

  27. M. W. Anderson, T. C. Orton, R. D. Pickett, and T. E. Eling. Accumulation of amines in the isolated perfused rabbit lung.J. Pharmacol. Exp. Ther. 189:456–466 (1974).

    CAS  PubMed  Google Scholar 

  28. R. H. Briant, E. M. Blackwell, F. M. Williams, D. S. Davies, and C. T. Dollery. The metabolism of sympathomimetic bronchodilatator drugs by the isolated perfused dog lung.Xenobiotica 3:787–799 (1973).

    Article  CAS  PubMed  Google Scholar 

  29. A. Ryrfeldt and N. O. Bodin. The physiological disposition of ibuterol, terbutaiine and isoproterenol after endotracheal instillation to rats.Xenobiotica 5:512–529 (1975).

    Article  Google Scholar 

  30. A. Ryrfeldt and E. Nilsson. Physiological disposition of ibuterol and terbutaiine in the isolated perfused rat lung.Ada Pharmacol. Toxicol. 39:39–45 (1976).

    CAS  Google Scholar 

  31. A. Ryrfeldt and E. Nilsson. Uptake and biotransformation of ibuterol and terbutaline in isolated perfused rat and guinea-pig lungs.Biochem. Pharmacol. 27:301–305 (1978).

    Article  CAS  PubMed  Google Scholar 

  32. R. M. Philpot, M. W. Anderson, and T. E. Eling. Uptake accumulation and metabolism of chemicals by the lung. Dans: Metabolic function of the lung. Y. S. Bakhle and J. R. Vane, (eds.), Marcel Dekker, New York, 1977, pp. 123–171.

    Google Scholar 

  33. M. S. Brown. Hypokalemia from beta2-receptor stimulation by circulating epinephrine.Am. J. Cardiol. 56:3D-9D (1985).

    Article  CAS  PubMed  Google Scholar 

  34. H. H. Vincent, A. S. Man in't Veld, F. Boomsma, and M. A. D. H. Schalekamp. Prevention of epinephrine-induced hypokalaemia by nonselective beta blockers.Am. J. Cardiol. 56:10D-14D (1985).

    Article  CAS  PubMed  Google Scholar 

  35. M. Kung. Parenteral adrenergic bronchodilatators and potassium.Chest 89:322–323 (1986).

    Article  CAS  PubMed  Google Scholar 

  36. R. L. Vick, E. P. Todd, and D. W. Luedke. Epinephrine-induced hypokaliemia: Relation to liver and skeletal muscle.J. Pharmacol. Exp. Ther. 181:139–146 (1972).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Medical Research Council of Canada (MT-10874). Sylvie Perreault is recipient of a Bourse Formation de troisième cycle des Fonds de la Recherche en Santé du Québec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perreault, S., Ong, H. & du Souich, P. Salbutamol disposition and dynamics in conscious rabbits: Influence of the route of administration and of the dose. Journal of Pharmacokinetics and Biopharmaceutics 20, 461–476 (1992). https://doi.org/10.1007/BF01061466

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01061466

Key words

Navigation