Advertisement

Ukrainian Mathematical Journal

, Volume 45, Issue 12, pp 1900–1906 | Cite as

On exact irreducible representations of locally normal groups

  • A. V. Tushev
Article

Abstract

We obtain a generalization of the Gaschutz criterion of existence of exact irreducible representations of finite groups to the class of normal groups.

Keywords

Irreducible Representation Normal Group Finite Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. J. S. Robinson,Finiteness Conditions and Generalized Soluble Groups, Springer Verlag, Berlin (1972).Google Scholar
  2. 2.
    W. Gaschutz, “Endliche Gruppen mit treuen absolutirreduziblen Darstellungen,”Math. Nachr.,12, No. 3/4, 253–255 (1954).Google Scholar
  3. 3.
    É. M. Zhmud', “On isomorphic linear representations of finite groups,”Mat. Sb.,38, No. 4, 417–430 (1956).Google Scholar
  4. 4.
    A. V. Tushev, “Irreducible representations of locally polycyclic groups over an absolute field,”Ukr. Mat. Zh.,42, No. 10, 1389–1394 (1990).Google Scholar
  5. 5.
    D. J. S. Robinson and Z. Zhang, “Groups whose proper quotients have finite derived subgroups,”J. Algebra,118, 346–368 (1988).Google Scholar
  6. 6.
    L. Fuchs,Infinite Abelian Groups. Vol. II, Academic Press, New York-London (1973).Google Scholar
  7. 7.
    S. Lang,Algebra [Russian translation], Mir, Moscow (1968).Google Scholar
  8. 8.
    N. Bourbaki,Modules, Rings, Forms [Russian translation], Nauka, Moscow (1966).Google Scholar
  9. 9.
    J. S. Wilsin, “Some properties of groups inherited by normal subgroups of finite index,”Math. Z.,144, No. 1. 19–21 (1970).Google Scholar
  10. 10.
    K. S. Brown,Cohomology of Groups, Springer-Verlag, New York-Heidelberg-Berlin (1982).Google Scholar
  11. 11.
    A. Guichardet,Cohomologie des Groupes Topologiques et des Algebres de Lie, Cedic/Fernand, Nathan, Paris (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • A. V. Tushev
    • 1
  1. 1.Dnepropetrovsk UniversityDnepropetrovsk

Personalised recommendations