Skip to main content
Log in

Numerical analysis of coupled hydromagnetic wave equations with a finite difference scheme

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A finite difference scheme offering second-order accuracy is introduced to solve numerically a system of two mixed-type coupled partial differential equations with variable coefficients. The stability conditions of the scheme have been examined by both the Fourier method and the matrix method. The Fourier method via the local transform is first used to investigate parametrically the stability conditions of the proposed scheme. The stability conditions are checked point by point for the entire domain of interest without involving the convolution of the Fourier transform. These conditions are further verified by the matrix method. Since two different methods are employed, one can ensure that the stability conditions are achieved consistently. Moreover, the optimum parameters increasing the accuracy of the numerical solutions can be determined during the stability analysis. The proposed numerical algorithm has been demonstrated by a boundary value problem which considers the coupling and propagation of hydromagnetic waves in the magnetosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames, W. F. (1977).Numerical Methods for Partial Differential Equations, Academic Press, New York, p. 56.

    Google Scholar 

  • Ananthakrishnaiah, U., Manohar, R., and Stephenson, J. W. (1987).Numerical Mathematics for Partial Differential Equations, Vol. 3, p. 219.

    Google Scholar 

  • Anderson, D. A., Tannehill, J. C., and Pletcher, R. H. (1984).Computational Fluid Mechanics and Heat Transfer, Hemisphere Publishing Corp., New York, p. 80.

    Google Scholar 

  • Chan, T. F. (1984). Stability analysis of finite difference schemes for the advection-diffusion equation,SIAM J. Numer. Anal. 21, 272.

    Google Scholar 

  • Cumming, W. D., O'Sullivan, R. J., and Coleman, J. (1969). Standing Alfven waves in the magnetosphere,J. Geophys. Res. 74.

  • Gottlieb, D., and Orszag, S. A. (1986).Numerical Analysis of Spectral Methods: Theory and Applications, SIAM, Philadelphia.

    Google Scholar 

  • Hall, G., and Watt, J. M. (1976).Modern Numerical Methods for Ordinary Differential Equations, Clarendon Press, Oxford.

    Google Scholar 

  • Jacobs, J. A. (1970).Geomagnetic Micropulsations, Springer, New York, p. 126.

    Google Scholar 

  • Kreiss, H. O. (1963). Über implizite Differenzenmethoden für partielle Differentialgleichchungen,Numer. Math. 5, 24.

    Google Scholar 

  • Kuo, S. P., Lee, M. C., and Wolfe, A. (1987). Spectral characteristics of hydromagnetic waves in the magnetosphere,J. Plasma Phys. 38, 235.

    Google Scholar 

  • Lax, P. D., and Wendroff, B. (1960). Systems of conservation laws,Commun. Pure Appl. Math. 13, 217.

    Google Scholar 

  • Lin, C. S., and Barfield, J. N. (1985). Azimuthal propagation of storm time Pc5 waves observed simultaneously by geostationary satellitess GOES2 and GOES3,J. Geophys. Res. 90, 11075.

    Google Scholar 

  • Potter, D. (1972).Computational Physics, Wiley-Interscience, London, p. 13.

    Google Scholar 

  • Radoski, H. R. (1967). A note on oscillatory field lines,J. Geophys. Res. 72, 418.

    Google Scholar 

  • Radoski, H. R. (1973). Hydromagnetic propagation in the magnetosphere: A mechanical analogue for the study of the initial value problem of coupled mode,J. Geomag. Geoelectr. 25, 363.

    Google Scholar 

  • Radoski, H. R. (1974). A theory of latitude dependent geomagnetic micropulsations: The asymptotic fields,J. Geophys. Res. 78, 595.

    Google Scholar 

  • Richtmeyer, R. D., and Morton, K. W. (1967).Difference Methods for Initial-Value Problems, Wiley-Interscience, New York, p. 9.

    Google Scholar 

  • Takahashi, K., Higbie, P. R., and Baker, D. N. (1985). Azimuthal propagation and frequency characteristic of compressional Pc5 waves observed at geostationary orbit,J. Geophys. Res. 90, 1493.

    Google Scholar 

  • Takahashi, K., Fennell, J. F., Amata, E., and Higbie, P. R. (1987). Field-aligned structure of the storm time Pc5 wave of November 14–15, 1979.J. Geophys. Res. 92, 5857.

    Google Scholar 

  • Varah, J. M. (1971). Stability of difference approximations to the mixed initial boundary value problems for parabolic systems,SIAM J. Numer. Anal. 8, 598.

    Google Scholar 

  • Walker, A. D. M., Greenwald, R. A., Korth, A., and Kremser, G. (1982). STARE and GEOS2 observations of a storm time Pc5 ULF pulsation,J. Geophys. Res. 87, 9135.

    Google Scholar 

  • Whang, M. H., Kuo, S. P., and Lee, M. C. (1991). Reconstruction of global micropulsations in the magnetosphere,J. Plasma Phys. 45, 159.

    Google Scholar 

  • Widlund, O. B. (1966). Stability of parabolic difference schemes in the maximum norm,Numer. Math. 8, 186.

    Google Scholar 

  • Young, D. M., and Danwalder, J. H. (1965).Error in Digital Computation, Rall, L. (ed.), Academic Press, New York, p. 181.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whang, M.H., Kuo, S.P. & Lee, M.C. Numerical analysis of coupled hydromagnetic wave equations with a finite difference scheme. J Sci Comput 7, 241–261 (1992). https://doi.org/10.1007/BF01061330

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01061330

Key words

Navigation