Skip to main content

APriori lithium dosage regimen using population characteristics of pharmacokinetic parameters

Abstract

The important problem of initiation of long-term lithium treatments tackled by means of the selection of an a prioridosage regimen based on the presumed efficacy of lithium and absence of toxicity. The pharmacokinetics of Li + ion is represented by a four-compartment open model including the supposed first-order processes for the release of the active compound from the dosage form and its absorption. Experimental protocols for measurements of serum concentrations and of urinary amounts after single and multiple dosing to healthy volunteers were derived with several oral dosage forms. Estimation of the pharmacokinetic parameters for each subject made it possible to validate the model for the various dosage forms. The interindividual variability of these parameters is taken into account by estimating the characteristics of the statistical distribution for the whole population. A dosage regimen is considered optimum when serum concentration profiles at steady state range from the threshold of efficacy (0.8 mmol/liter) to the threshold of toxicity (2.0 mmol/liter). When the number of daily intakes is fixed, the search for the optimum dose for the whole population is effected by minimizing the expected value of the random variable which characterizes the risks of excursion out of the therapeutic range. By this means universal dosages are shown to be unsatisfactory. However, certain dosage regimens individualized with respect to the renal clearance value of lithium and based on two or three daily intakes can give excellent results even when conventional dosage forms are used.

This is a preview of subscription content, access via your institution.

References

  1. J. F. J. Cade. Lithium salts in the treatment of psychotic excitement.Med. J. Aust. 36:349–352 (1949).

    Google Scholar 

  2. M. Schou, N. Juel-Nielsen, E. Strömgren, and H. Voldby. The treatment of manic psychosis by the administration of lithium salts.J. Neurol. Neurosurg. Psychiat. 17:250–260 (1954).

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  3. R. J. Greene. Clinical pharmaceutical aspects of lithium therapy.Drug Intell. Clin. Pharmacol. 9:17–25 (1975).

    Google Scholar 

  4. S. Gershon and B. Shopsin.Lithium—Its Role in Psychiatric Research and Treatment, Plenum Press, New York, 1973.

    Google Scholar 

  5. F. N. Johnson.Lithium Research and Therapy, Academic Press, New York, 1975.

    Google Scholar 

  6. A. Frazer, J. Mendels, S. K. Secunda, C. M. Cochrane, and C. P. Bianchi. The prediction of brain lithium concentrations from plasma or erythrocyte measures.J. Psychiat. Res. 10:1–7 (1973).

    CAS  PubMed  Article  Google Scholar 

  7. T. B. Cooper, P. E. E. Bergner, and G. M. Simpson. The 24-hour serum lithium level as a prognosticator of dosage requirements.Am. J. Psychiat. 130:601–603 (1973).

    CAS  PubMed  Article  Google Scholar 

  8. T. B. Cooper and G. M. Simpson. The 24-hour lithium level as a prognosticator of dosage requirements: A 2-year follow-up study.Am. J. Psychiat. 133:440–443 (1976).

    CAS  PubMed  Article  Google Scholar 

  9. A. Amdisen. Monitoring of lithium treatment through determination of lithium concentration.Dan. Med. Bull 22:277–291 (1975).

    CAS  PubMed  Google Scholar 

  10. P. E. E. Bergner, K. Berniker, T. B. Cooper, J. R. Gradijan and G. M. Simpson. Lithium kinetics in man: Effect of variation in dosage pattern.Br. J. Pharmacol. 49:328–339 (1973).

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  11. J. L. Crammer, R. M. Rosser, and G. Crane. Blood levels and management of lithium treatment.Br. Med. J. 3:650–654 (1974).

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  12. A. Coppen, J. E. Bailey, and S. G. White. Slow-release lithium carbonate.J. Clin. Pharmacol. 9:160–163 (1969).

    CAS  Google Scholar 

  13. A. Coppen and J. E. Bailey. Sustained-release lithium carbonate.Int. Pharmacopsychiat. 5:183–186 (1970).

    Google Scholar 

  14. K. Ventouras, P. Dick, and P. Buri. Etude d'une nouvelle forme galénique á action prolongée de sulfate de lithium.Schweiz. Med. Wschr. 103:878–881 (1973).

    CAS  PubMed  Google Scholar 

  15. L. B. Sheiner, B. Rosenberg, and K. L. Melmon. Modelling of individual pharmacokinetics for computer-aided drug dosage.Comp. Biomed. Res. 5:441–459 (1972).

    Article  Google Scholar 

  16. L. B. Sheiner, B. Rosenberg, and V. V. Marathe. Estimation of population characteristics of pharmacokinetic parameters from routine clinical data.J. Pharmacokin. Biopharm. 5:445–479 (1977).

    CAS  Article  Google Scholar 

  17. E. Widerlöv. A comparative double-blind study of the side effects of Litarex and Lithionit Duretter.Acta Psychiat. Scand. 54:294–302 (1976).

    PubMed  Article  Google Scholar 

  18. G. Persson. Plasma lithium levels and side effects during administration of a slow release lithium sulphate preparation (lithium Lipett C) and lithium carbonate tablets.Acta Psychiat. Scand. 50:174–182 (1974).

    CAS  PubMed  Article  Google Scholar 

  19. A. C. Altamura, R. Gomeni, E. Sachetti, and E. Smeraldi. Plasma and intracellular kinetics of lithium after oral administration of various lithium salts.Eur. J. Clin. Pharmacol. 12:59–63 (1977).

    CAS  PubMed  Article  Google Scholar 

  20. H. C. Caldwell. Dissolution of lithium and magnesium from lithium carbonate capsules containing magnesium stearate.J. Pharm. Sci. 63:770–773 (1974).

    CAS  PubMed  Article  Google Scholar 

  21. M. Schou and D. M. Shaw. Lithium in recurrent manic-depressive disorder.Practitioner 210:105–111 (1973).

    CAS  PubMed  Google Scholar 

  22. A Amdisen. Serum level monitoring and clinical pharmacokinetics of lithium.Clin. Pharmacol. 2:73–92 (1977).

    CAS  Article  Google Scholar 

  23. J. G. Wagner.Biopharmaceutics and Relevant Pharmacokinetics, Drug Intelligence Publications, Hamilton, Ill. 1971.

    Google Scholar 

  24. H. C. Caldwell, W. J. Westlake, S. M. Connor, and T. Flanagan. A pharmacokinetic analysis of lithium carbonate absorption from several formulations in man.J. Clin. Pharmacol. 11:349–356 (1971).

    CAS  Google Scholar 

  25. J. Richalet, A. Fault, and R. Pouliquen.Identification des Processus par la Méthode du Modéle, Gordon and Breach, London, 1973.

    Google Scholar 

  26. D. W. Marquardt. An algorithm for least-squares estimation of non-linear parameters.J. Soc. Indust. Appl. Math. 2:431–441 (1963).

    Article  Google Scholar 

  27. D. Dumas de Rauly.L'Estimation Statistique, Gauthier-Villars, Paris, 1968.

    Google Scholar 

  28. N. R. Draper and H. Smith.Applied Regression Analysis, Wiley, New York, 1966.

    Google Scholar 

  29. G. Prevost. Estimation of a normal probability density function from samples measured with non-negligible and non-constant dispersion. Internal report, June 1977, Adersa-Gerbios, 53 avenue de l'Europe—F. 78140, Velizy-Villacoublay.

  30. Y. Bard.Nonlinear Parameter Estimation, Academic Press, New York, 1974.

    Google Scholar 

  31. J. F. Boisvieux. Modelisation et commande des processus biologiques. Aspects théoriques et mise en oeuvre. Thése d'Etat és Sciences Physiques, Université de Paris VI, 1977.

  32. J. L. Steimer. Optimisation de la posologie d'un médicament. Aspects méthodologiques et application au lithium. Thése de 3éme cycle, Statistique Mathématique, Université de Paris VI, 1978.

  33. M. M. Schou, P. C. Baastrup, P. Graf, P. Weis, and J. Angst. Pharmacological and clinical problems of lithium prophylaxis.Br. J. Psychiat. 116:615–619 (1970).

    CAS  Article  Google Scholar 

  34. P. C. Baastrup. Practical problems concerning lithium maintenance therapy. In Vinar, Votova, and Bradly (eds.),Advances in Neuropsychopharrnacology, Vol. 1, North-Holland, Amsterdam, 1971

    Google Scholar 

  35. E. Krüger-Thiemer. Pharmacokinetics and dose-concentration relationships. InPhysico-chemical Aspects of Drug Actions, Pergamon Press, New York, 1968.

    Google Scholar 

  36. J. G. Wagner.Fundamentais of Clinical Pharmacokinetics, Drug Intelligence Publications, Hamilton, Ill., 1975.

    Google Scholar 

  37. R. W. Jelliffe, J. Buell, R. Kalaba, R. Sridhar, and R. Rockwell. A mathematical study of the metabolic conversion of digitoxin to digoxin in man.Math. Biosci. 6:387–403 (1970).

    CAS  Article  Google Scholar 

  38. R. W. Jelliffe, J. Buell, R. Kalaba, R. Sridhar, and R. Rockwell. A computer program for digitalis dosage regimens.Math. Biosci. 9:179–193 (1970).

    Article  Google Scholar 

  39. C. C. Peck, L. B. Sheiner, C. M. Martin, D. T. Combs, and K. L. Melmon. Computer-assisted digoxin therapy.New Engl. J. Med. 289:441–446 (1973).

    CAS  PubMed  Article  Google Scholar 

  40. F. H. Dost,Der blutspiegel Kinetic der Konzentrationsablaüfe in der Kreislaufflüssigkeit, G. Thieme Verlag, Leipzig, 1953.

    Google Scholar 

  41. J. G. Wagner, J. L. Northam, C. D. Always, and O. S. Carpenter. Blood levels of drugs at equilibrium state after multiple dosing.Nature 20:1301–1302 (1965).

    Article  Google Scholar 

  42. E. Krüger-Thiemer. Formal theory of drug dosage regimens. I.J. Theor. Biol. 13:212–235 (1966).

    Article  Google Scholar 

  43. E. Krüger-Thiemer. Formal theory of drug dosage regimens. II. The exact plateau effect.J. Theor. Biol. 23:169–190 (1969).

    PubMed  Article  Google Scholar 

  44. L. A. Zadeh and C. A. Desoer.Linear System Theory: The State-Space Approach, McGraw-Hill, New York, 1963.

    Google Scholar 

  45. C. M. Kunin and M. Finland. Restrictions imposed on antibiotic therapy by renal failure.Arch. Intern. Med. 104:1030–1050 (1959).

    CAS  PubMed  Article  Google Scholar 

  46. T. N. Tozer. Nomogram for modification of dosage regimens in patients with chronic renal function impairments.J. Pharmacokin. Biopharm. 2:13–28 (1974).

    Article  Google Scholar 

  47. B. Fyro, U. Petterson, and G. Sedvall. Pharmacokinetics of lithium in manic-depressive patients.Acta Psychiat. Scand. 49:237–247 (1973).

    CAS  PubMed  Article  Google Scholar 

  48. R. W. Mason, E. G. McQueen, P. J. Keary, and N. M. James. Pharmacokinetics of lithium: Elimination half-time, renal clearance and apparent volume of distribution in schizophrenia.Clin. Pharmacokin. 3:241–246 (1978).

    CAS  Article  Google Scholar 

  49. B. Fyro and G. Sedvall. The excretion of lithium. In F. N. Johnson (ed.),Lithium Research and Therapy, Academic Press, New York, 1975, pp. 287–312.

    Google Scholar 

  50. J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression function.Ann. Math. Stat. 23:462–466 (1952).

    Article  Google Scholar 

  51. G. N. Saridis. Stochastic approximation methods for identification and control: A survey.IEEE Tr. Automatic Control A.C-19 6:798–809 (1974).

    Article  Google Scholar 

  52. P. C. Baastrup and M. Schou. Lithium as a prophylactic agent: Its effect against recurrent depressions and manic-depressive psychosis.Arch. Gen. Psychiat. 16:162–172 (1967).

    CAS  PubMed  Article  Google Scholar 

  53. M. Schou. Lithium in psychiatric therapy and prophylaxis.J. Psychiat. Res. 6:67–95 (1968).

    CAS  PubMed  Article  Google Scholar 

  54. P. Deniker, D. Ginestet, and H. Loo. IntérÊt pratique de l'étude cinétique de la lithiémie au cours du nycthémère.Ann. Medico-psychol. 1:381–388 (1974).

    CAS  Google Scholar 

  55. A. Amdisen and J. Sjogren. Lithium absorption from sustained-release tablets (Duretter).Acta Pharmacol. Suec. 5:465–472 (1968).

    CAS  Google Scholar 

  56. G. Sedvall, U. Pettersson, and B. Fyro. Individual differences in serum levels of lithium in human subjects receiving fixed doses of lithium carbonate: Relation to renal lithium clearance and body weight.Pharmacol. Clin. 2:231–235 (1970).

    CAS  Article  Google Scholar 

  57. U. Groth, W. Prellwitz, and E. Johnchen. Estimation of pharmacokinetics parameters of lithium from saliva and urine.Clin. Pharmacol. Ther. 16:490–498 (1974).

    CAS  PubMed  Google Scholar 

  58. K. Thomsen and M. Schou. Renal lithium excretion in man.Amer. J. Physiol. 215:823–827 (1968).

    CAS  PubMed  Google Scholar 

  59. V. Petersen, S. Hvidt, K. Thomsen, and M. Schou. Effect of prolonged thiazide treatment on renal lithium clearance.Br. Med. J. 2:143–145 (1974).

    Article  Google Scholar 

  60. J. M. Himmelhoch, R. I. Poust, A. G. Mallinger, I. Hanin, and J. F. Neil. Adjustment of lithium dose during lithium chlorothiazide therapy.Clin. Pharmacol. Ther. 22:225–227 (1977).

    CAS  PubMed  Google Scholar 

  61. R. H. Merson.An Operational Method for the Study of Integration Processes, Proceedings of Conference on Data Processing. Weapons Research Establishment, Salisbury, Australia pp. 110–1 to 110-26 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was partly supported by grants D.G.R.S.T. No. 75.7.1267 (Adersa-Gerbios) and No. 75.7.1268 (Theraplix Laboratory).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gaillot, J., Steimer, JL.J., Mallet, A.J. et al. APriori lithium dosage regimen using population characteristics of pharmacokinetic parameters. Journal of Pharmacokinetics and Biopharmaceutics 7, 579–628 (1979). https://doi.org/10.1007/BF01061210

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01061210

Key words

  • lithium therapy
  • linear pharmacokinetics
  • steady-state pattern
  • therapeutic range
  • interindividual variability
  • optimization of dosage regimen
  • personalized dosage schedule