Dose dependent pharmacokinetics of prednisone and prednisolone in man

Abstract

Six healthy male volunteers were given 5, 20, and 50 mg of oral prednisone and 5, 20, and 40 mg doses of intravenous prednisolone. Plasma and urine concentrations of prednisone and prednisolone were determined by HPLC, and the binding of prednisolone to plasma proteins was measured by radioisotopic and equilibrium dialysis techniques. The pharmacokinetics of both oral prednisone and intravenous prednisolone were dose-dependent. The mean oral dose plasma clearances of prednisone ranged from 572 ml/min/ 1.73 m 2 for the 5mg dose to 2271 ml/min/1.73 m 2 for the 50 mg dose. Changes in prednisone half-life were insignificant, but increases in the half-life of its metabolite were dose-dependent. The systemic plasma clearance of i.v. prednisolone was dose-dependent and increased from 111 to 194 ml/min/1.73 m 2 over the 5 to 40 mg i.v. dosage range. The steady-state volume of distribution also increased, but little change in mean transit time and half-life was found. The binding of prednisolone to plasma proteins was markedly concentration-dependent, and a two compartment, nonlinear equation was used to characterize the effective binding of prednisolone to transcortin and albumin. The apparent pharmacokinetic parameters of protein-free and transcortin-free prednisolone were relatively constant with dose. The interconversion of prednisone and prednisolone varied with time and dose, although prednisolone concentrations dominated by 4-to 10-fold over prednisone. In urine, 2–5% of either administered drug was excreted as prednisone and 11–24% as prednisolone. The apparent renal clearances of both steroids were also nonlinear and unrelated to protein binding. These studies indicate that the pharmacokinetics of prednisone and prednisolone are dose-dependent and that protein binding does not fully explain their apparent nonlinear distribution and disposition.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    H. G. Morris. Pharmacology and corticosteroids in asthma. In E. Middleton Jr., C. Reed, and E. Ellis (eds.),Allergy Principles and Practice, C. V. Mosby, St. Louis, 1978, pp. 464–480.

    Google Scholar 

  2. 2.

    P. L. Ballard. Delivery and transport of glucocorticoids to target cells. In J. D. Baxter and G. G. Rousseau (eds.),Glucocorticoid Hormone Action, Monogr. Endocrinol, Springer, Heidelberg, 1979, pp. 25–48.

    Google Scholar 

  3. 3.

    G. P. Lewis, W. J. Jusko, C. W. Burke, and L. Graves. Prednisone side-effects and serum protein levels,Lancet, 778–781 (Oct. 9, 1971).

  4. 4.

    A. W. Meikle, J. A. Weed, and F. H. Tyler. Kinetics and interconversion of prednisolone and prednisone studied with new radioimmunoassays,J. Clin. Endocrinol. Metab. 41:717–721 (1975).

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    M. E. Pickup, J. R. Lose, P. A. Leatham, V. M. Rhind, V. Wright, and W. W. Downie. Dose dependent pharmacokinetics of prednisolone,eur. J. Clin. Pharmacol. 12:213–219 (1977).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    J. Q. Rose, A. M. Yurchak, and W. J. Jusko. Dose dependent pharmacokinetics of prednisolone in man. InAbstracts of the 7th International Congress of Pharmacology, Paris, July 16–21. Pergamon Press, Oxford, 1978.

    Google Scholar 

  7. 7.

    J. C. K. Loo, I. J. McGilveray, N. Jordan, J. Moffat, and R. Brien. Dose dependent pharmacokinetics of prednisone and prednisolone in man,J. Pharm. Pharmacol. 30:736 (1978).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    A. Tanner, F. Bochner, J. Caffin, J. Halliday, and L. Powell. Dose dependent prednisolone kinetics,Clin. Pharmacol. Ther. 25:571–578 (1979).

    CAS  PubMed  Google Scholar 

  9. 9.

    J. Q. Rose, A. M. Yurchak, and W. J. Jusko. Bioavailability of two 50 mg prednisone formulations in man. In Abstracts of A.Ph.A. Academy of Pharmaceutical Sciences, Montreal, May 13–18,1978.

  10. 10.

    P. S. Chen, I. H. Mills, and F. C. Bartter. Ultrafiltration studies of steroid-protein binding,J. Endocrinol. 23:129–137 (1961).

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    J. Q. Rose and W. J. Jusko. Corticosteroid analysis in biological fluids by high-performance liquid chromatography.J. Chromatogr. 162:273–280 (1979).

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Packard Instrument Manual #2136 for Model 3255 Tri-Carb Liquid Scintillation Spectrometer System: Sample Channels Ratio, pp. 3–9.

  13. 13.

    M. Gibaldi and D. Perrier: Trapezoidal rule. In J. Swarbrick (ed.)Pharmacokinetics, Marcel Dekker, New York, 1975, pp. 293–296.

    Google Scholar 

  14. 14.

    C. M. Metzler. NONLIN, a computer program for nonlinear least-squares regression. The Upjohn Company, Kalamazoo, Mich., 1974.

    Google Scholar 

  15. 15.

    K. Yamaoka, T. Nakagawa, and T. Uno. Statistical moments in pharmacokinetics,J. Pharmacokin. Biopharm. 6:547–557 (1978).

    CAS  Article  Google Scholar 

  16. 16.

    N. A. Lassen and W. Perl.Tracer Kinetic Methods in Medical Physiology. Raven Press, New York, 1979, pp. 76–80.

    Google Scholar 

  17. 17.

    J. Q. Rose, A. M. Yurchak, W. J. Jusko, and D. Powell. Bioavailability and disposition of prednisone and prednisolone from prednisone tablets,Biopharm. Drug. Disp. 1:247–258 (1980).

    CAS  Article  Google Scholar 

  18. 18.

    T. G. Muldoon and V. Westphal. Steroid-protein interactions XV. Isolation and characterization of corticosteroid binding globulin from human plasma.J. Biol. Chem. 242:5636–5643 (1967).

    CAS  PubMed  Google Scholar 

  19. 19.

    J. F. Tait and S. Burstein. In vivo studies of steroid dynamics. In G. Pincus, K. V. Thimann, and E. B. Astwood (eds.)The Hormones, Academic Press, New York, 1964, pp. 441–557.

    Google Scholar 

  20. 20.

    P. DeMoor, R. Deckx, and O. Steeno. Influence of various steroids on the specific binding of cortisol.J. Endocrinol. 27:355–356.

  21. 21.

    R. D. Zipser, P. F. Speckart, P. K. Zia, W. A. Edmiston, F. Y. K. Lau, and R. Horton. The effect of ACTH and cortisol on aldosterone and cortisol clearance and distribution in plasma and whole blood,J. Clin. Endocrinol. Metab. 43:1101–1109 (1976).

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    W. A. Hsueh, A. Paz-Guevara, and T. Bledsoe. Studies comparing the metabolic clearance rate of 11β,17,21-trihydroxypregn-l,4-diene-3,2D-dione(prednisolone) after oral 17,21-dihydroxypregn-1,4-diene-3 11,20-trione and intravenous prednisolone.J. Clin. Endocrinol. Metab. 48:748–752 (1979).

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    M. L. Rocci, S. J. Szefler, M. Acara, and W. J. Jusko. Prednisolone and prednisone metabolism and excretion in the isolated perfused rat kidney.Pharmacologist 21:184 (1979).

    Google Scholar 

  24. 24.

    M. L. Rocci and W. J. Jusko. Prednisolone serum protein binding in four species.J. Pharm. Sci. 69:977–978 (1980).

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    J. Q. Rose, J. A. Nickelsen, E. Middleton, Jr., A. M. Yurchak, B. Park, and W. J. Jusko. Prednisolone disposition in steroid dependent asthmatics.J. Allerg. Clin. Immunol (1981).

  26. 26.

    G. J. Pepe, E. D. Albrecht, and J. D. Townsley. Serum cortisol levels affect the metabolic clearance rate of progesterone in female baboons.Steroids 30:561–568.

  27. 27.

    W. J. Jusko and M. Gretch. Plasma and tissue binding of drugs in pharmacokinetics.Drug Metab. Rev. 5:43–140 (1976).

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    P. G. Zager, W. J. Burtis, J. A. Luetscher, A. J. Dowdy, and S. Sood. Increased plasma protein binding and lower metabolic clearance rate of aldosterone in plasma of low cortisol concentration.J. Clin. Endocrinol. Metab. 42:207–214 (1976).

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    A. Vermuelen and S. Ando. Metabolic clearance rate and interconversion of androgens and the influence of the free androgen fraction.J. Clin. Endocrinol. Metab. 48:320–326 (1979).

    Article  Google Scholar 

  30. 30.

    C. A. Nugent, K. Eik-nes, and F. H. Tyler. A comparative study of the metabolism of hydrocortisone and prednisolone,J. Clin. Endocrinol. Metab. 19:526–534 (1959).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    S. M. El Dareer, R. F. Struck, V. M. White, L. B. Mellett, and D. L. Hill. Distribution and metabolism of prednisone in mice, dogs and monkeys.Cancer Treat. Rep. 61:1279–1289 (1977).

    PubMed  Google Scholar 

  32. 32.

    J. Hartiala. Steroid metabolism in adult lung.Agents and Actions 6:522–526 (1976).

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    C. Baylis and B. M. Brenner. Mechanism of the glucocorticoid-induced increase in glomerular filtration rate.Am. J. Physiol. 234:F166-F170 (1978).

    CAS  PubMed  Google Scholar 

  34. 34.

    A. Breckenridge, C. W. Burke, D. S. Davies, and M. L. E. Orme. Immediate decrease by hydrocortisone of the plasma half-life of antipyrine.Br. J. Pharmacol. 47:434–436 (1973).

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  35. 35.

    J. Aarbakke, M. R. Bending, and D. S. Davies. Increased oxidation of phenylbutazone during hydrocortisone infusion in man.Br. J. Clin. Pharmacol. 4:621–622 (1977).

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  36. 36.

    C. A. Shively, C. L. Gagbardi, R. D. Hartshorn, and E. Vessell. Failure of hydrocortisone to alter acutely antipyrine disposition.Clin. Pharmacol. Ther. 23:408–413 (1978).

    CAS  PubMed  Google Scholar 

  37. 37.

    P. Saenger, A. B. Rifkind, and J. Pareira. Effect of glucocorticoids and ACTH on antipyridine clearance in children.Clin. Pharmacol. Ther. 23:692–696 (1978).

    CAS  PubMed  Google Scholar 

  38. 38.

    W. R. Beisel, J. J. Cos, R. Horton, P. Y. Chao, and P. H. Forsham. Physiology of urinary cortisol excretion.J. Clin. Endocrinol. 24:887–893 (1964).

    CAS  Article  Google Scholar 

  39. 39.

    J. O. Davies and D. S. Howell. Comparative effect of ACTH, cortisone and DOCA on renal function, electrolyte excretion and water exchange in normal dogs.Endocrinology 52:245–255 (1953).

    Article  Google Scholar 

  40. 40.

    L. deBermudez and J. P. Hayslett. Effect of methylprednisolone on renal function and the zonal distribution of blood flow in the rat.Circ. Res. 31:44–52 (1972).

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    M. F. Levitt and M. E. Bader. Effect of cortisone and ACTH on fluid and electrolyte distribution in man.Am. J. Med. 11:715–723 (1953).

    Article  Google Scholar 

  42. 42.

    M. M. Pechet, B. Bowers, and F. C. Bartter. Metabolic studies with a new series of 1,4-diene steroids: II. Effects in normal subjects of prednisone, prednisolone and9α- fluoro-prednisolone.J. Clin. Invest. 38:691–701 (1959).

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  43. 43.

    D. Jenkins and J. E. Schemmel. Metabolic effects of 6-methylprednisolone.Metabolism 7:416–424 (1958).

    CAS  PubMed  Google Scholar 

  44. 44.

    W. R. Slaunwhite, Jr., G. N. Lockie, N. Back, and A. A. Sandberg. Inactivity in vivo of transcortin-bound cortisoi.Science 135:1062 (1962).

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    J. Y. F. Paterson and F. A. Harrison. The splanchnic and hepatic uptake of cortisoi in conscious and anaesthetized sheep.J. Endocrinol. 55:335–350 (1972).

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    B. E. P. Murphy. The influence of serum proteins on the metabolism of cortisoi by the human placenta.J. Steroid Biochem. 10:387–392 (1979).

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    N. Keller, V. I. Richardson, and F. E. Yates. Protein binding and the biological activity of corticosteroids: In vivo induction of hepatic and pancreatic alanine aminotransferases by corticosteroids in normal and estrogen-treated rats.J. Endocrinol. 84:49–62 (1969).

    CAS  Article  Google Scholar 

  48. 48.

    W. M. Pardridge and L. J. Mietus. Transport of protein-bound steroid hormones into liver in vivo.Am. J. Physiol. 237:E367-E372 (1979).

    CAS  PubMed  Google Scholar 

  49. 49.

    J. Q. Rose, J. A. Nickelsen, and W. J. Jusko. Prednisolone pharmacokinetics in relation to dose.J. Pediatr. 94:1014 (1979).

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    W. J. Jusko, J. R. Koup, and G. Alvan. Nonlinear assessment of phenytoin bioavailability.J. Pharmacokin. Biopharm. 4:327–336 (1976).

    CAS  Article  Google Scholar 

  51. 51.

    T. J. Sullivan, M. R. Hallmark, E. Sakmar, D. J. Weidler, R. H. Earhart, and J. G. Wagner. Comparative bioavailability: eight commercial prednisone tablets.J. Pharmacokin. Biopharm. 4:157–172 (1976).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to William J. Jusko.

Additional information

This work was supported in part by Grant 24211 from the National Institutes of General Medical Sciences, National Institutes of Health.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rose, J.Q., Yurchak, A.M. & Jusko, W.J. Dose dependent pharmacokinetics of prednisone and prednisolone in man. Journal of Pharmacokinetics and Biopharmaceutics 9, 389–417 (1981). https://doi.org/10.1007/BF01060885

Download citation

Key words

  • Prednisone
  • prednisolone
  • dose-dependent
  • pharmacokinetics
  • biotransformation
  • protein binding
  • bioavailability
  • transcortin binding
  • interconversion
  • renal clearance