Advertisement

Ukrainian Mathematical Journal

, Volume 45, Issue 11, pp 1762–1766 | Cite as

On the existence of initial values of solutions of weakly nonlinear parabolic equations

  • I. I. Skrypnik
Article
  • 17 Downloads

Abstract

We study the properties of solutions of weakly nonlinear parabolic equations in cylindrical domains. The existence conditions are established for local nontangential limits as t → 0.

Keywords

Parabolic Equation Existence Condition Nonlinear Parabolic Equation Cylindrical Domain Nontangential Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Fatou, “Séries trigonométriques et séries de Taylor,”Acta Math.,30, 335–400 (1906).Google Scholar
  2. 2.
    D. L. Burkholder and R. F. Gundy, “Distribution function inequalities for the area integral,”Stud. Math.,44, No. 6, 527–544 (1972).Google Scholar
  3. 3.
    L. Carleson, “On the existence of boundary values of harmonic functions of several variables,”Ark. Mat.,4, 339–393 (1962).Google Scholar
  4. 4.
    E. M. Stein,Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton (1970)Google Scholar
  5. 5.
    V. Yu. Shelepov, “On limit properties of solutions of elliptic equations in multidimensional regions representable as a difference of convex functions,”Mat. Sb.,133, 446–468 (1987).Google Scholar
  6. 6.
    I. I. Skrypnik, “Limit behavior of solutions of linear second-order parabolic equations,”Ukr. Mat. Zh.,45, No. 7, 1029–1038 (1993).Google Scholar
  7. 7.
    I. I. Skrypnik, “Limit behavior of solutions of weakly nonlinear elliptic equations,”Nelin. Granich. Zadachi,3, 66–71 (1991).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • I. I. Skrypnik
    • 1
  1. 1.Institute of Applied Mathematics and MechanicsUkrainian Academy of SciencesDonetsk

Personalised recommendations