Skip to main content
Log in

Mathematical basis for the measurement of absolute and fractional cardiac output with diffusible tracers by compartmental analysis methods

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Using compartmental analysis methods, a mathematical basis is given for the measurement of absolute and fractional cardiac output with diffusible tracers. Cardiac output is shown to be the product of the blood volume and the sum of the rate constants of tracer egress from blood, modified by a factor reflecting transcapillary diffusibility, the transfer fraction. The return of tracer to the blood and distant (intracellular) events are shown to play no role in the solution. Fractional cardiac output is the ratio of the rate constant of tracer egress from blood to an organ, divided by the sum of the egress constants from blood. Predominantly extracellular ions such as sodium or bromide are best suited for this technique, although theoretically any diffusible tracer whose compartmental model can be solved may be used. It is shown that fractional cardiac output is independent of the transfer fraction, and therefore can be measured accurately by tracers which are not freely diffusible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. G. Walker, and W. S. Wilde. Kinetics of radiopotassium in the circulation.Am. J. Physiol. 170:401–413 (1952).

    CAS  PubMed  Google Scholar 

  2. N. D. Charkes, P. T. Makler, Jr., and C. Philips. Studies of skeletal tracer kinetics. I. Digital-computer solution of a five compartment model of18F-fluoride kinetics in humans.J. Nucl. Med. 19:1301–1309 (1970).

    Google Scholar 

  3. N. D. Charkes, M. Brookes, and P. T. Makler, Jr. Studies of skeletal tracer kinetics. II. Evaluation of a five-compartment model of18F-fluoride kinetics in rats.J. Nucl. Med. 20:1150–1157 (1979).

    CAS  PubMed  Google Scholar 

  4. N. D. Charkes, M. Brookes, and P. T. Makler, Jr. Radiofluoride kinetics. In L. Colombetti (ed.),Principles of Radiopharmacology, Vol. III. CRC Press, Boca Raton, Fla., 1979, pp. 225–242.

    Google Scholar 

  5. R. Wootton. The single-passage extraction of18F in rabbit bone.Clin. Sci. Mol. Med. 47:73–77 (1974).

    CAS  PubMed  Google Scholar 

  6. A. Gellhorn, M. Merrell, and R. M. Rankin. The rate of transcapillary exchange of sodium in normal and shocked dogs.Am. J. Physiol. 142:407–427 (1944).

    CAS  Google Scholar 

  7. R. A. Shipley and R. E. Clark.Tracer Methods for in vivo Kinetics. Academic Press, New York, 1972, pp. 215–220.

    Google Scholar 

  8. V. V. Sagar, J. M. Piccone, and N. D. Charkes. Studies of skeletal tracer kinetics. III. Tc-99m (SN) methylenediphosphonate uptake in the canine tibia as a function of blood flow.J. Nucl. Med. 20:1257–1261 (1979).

    CAS  PubMed  Google Scholar 

  9. P. J. Kelly and J. B. Bassingthwaighte. Studies on bone ion exchanges using multiple-tracer indication-dilution techniques.Fed. Proc. 36:2634–2639 (1977).

    CAS  PubMed Central  PubMed  Google Scholar 

  10. P. T. Makler, Jr., and N. D. Charkes. Studies of skeletal tracer kinetics. IV. Optimum time delay for Tc-99m (Sn) methylenediphosphonate bone imaging.J. Nucl. Med. 21:641–645 (1980).

    PubMed  Google Scholar 

  11. L. A. Sapirstein. Regional blood flow by fractional distribution of indicators.Am. J. Physiol. 193:161–168 (1958).

    CAS  PubMed  Google Scholar 

  12. H. C. Conn, Jr., and J. Goldberg. Accuracy of a radiopotassium dilution (Stewart Principle) method for the measurement of the cardiac output.J. Appl. Physiol. 7:542–548 (1955).

    CAS  PubMed  Google Scholar 

  13. P. L. Altman and D. S. Dittmer.Biology Data Book, 2nd ed., Vol. III. Fed. Am. Soc. Exp. Biol., Bethesda, MD., 1974, p. 1700.

    Google Scholar 

  14. J. L. Patterson, Jr., R. H. Goetz, J. T. Doyle, J. V. Warren, O. H. Gaver, D. K. Detweier, S. I. Said, H. Hoernicke, M. McGregor, E. N. Keen, M. H. Smith, Jr., E. L. Hardie, M. Reynolds, W. P. Flau, and D. R. Waldo. Cardiorespiratory dynamics in the ox and giraffe, with comparative observations on man and other mammals.Ann. N.Y. Acad. Sci. 127:393–413 (1965).

    Article  PubMed  Google Scholar 

  15. V. P. Popovic and K. M. Kent. 120-day study of cardiac output in unanesthetized rats.Am. J. Physiol. 207:767–770 (1964).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charkes, N.D. Mathematical basis for the measurement of absolute and fractional cardiac output with diffusible tracers by compartmental analysis methods. Journal of Pharmacokinetics and Biopharmaceutics 12, 517–524 (1984). https://doi.org/10.1007/BF01060129

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01060129

Key words

Navigation