Skip to main content
Log in

Rotation of magnetization in unison and langevin equations for a large spin

  • Short Communication
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A single-domain ferromagnetic particle is represented as a large spin (model of rotation in unison) whose stochastic dynamics is derived from a spin-boson Hamiltonian. It is shown in the Markovian limit that thermal equilibrium exists provided that the fluctuation-dissipation theorem is supplemented by a symmetry constraint which for bilinear anisotropic and nonlinear (magnetoelastic) spin-bath coupling can only be satisfied in the underdamped limit. Only for bilinear isotropic coupling (Gilbert's theory) is it satisfied identically for arbitrary damping strength. Uniaxial and cubic symmetries are considered. For a model uniaxial crystal the thermal decay rate of M and the thermal enhancement of the macroscopic quantum tunneling rate are calculated for Gilbert and magnetoelastic dissipative couplings and compared. The effects of memory are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. Aharoni,J. Appl. Phys. 61:3302 (1987),62:2576 (1987); W. F. Brown,Micromagnets (R. E. Krieger, 1978), §5.2.

    Google Scholar 

  2. I. Klik and L. Gunther,J. Stat. Phys. 60:473 (1990).

    Google Scholar 

  3. I. Klik and L. Gunther,J. Appl. Phys. 67:4505 (1990).

    Google Scholar 

  4. A. O. Caldeira and A. J. Leggett,Ann. Phys. 149:374 (1983).

    Google Scholar 

  5. H. Dekker,Physica 144A:453 (1987).

    Google Scholar 

  6. T. L. Gilbert,Phys. Rev. 100:1243 (1955); W. F. Brown,Phys. Rev. 130:1677 (1963).

    Google Scholar 

  7. L. Landau and E. Lifshitz,The Classical Theory of Fields (Addison-Wesley, 1951), §6.9.

  8. E. A. Turov,Physical Properties of Magnetically Ordered Systems (Academic Press, 1965), Appendix C.

  9. E. M. Chudnovsky and L. Gunther,Phys. Rev. Lett. 60:661 (1988);Phys. Rev. B 37:9455 (1988).

    Google Scholar 

  10. B. J. Matkowsky, Z. Schuss, and C. Tier,J. Stat. Phys. 35:443 (1984); M. M. Dygas, B. J. Matkowsky, and Z. Schuss,SIAM J. Appl. Math. 46:265 (1986).

    Google Scholar 

  11. A. Garg and G.-H. Kim,Phys. Rev. Lett. 63:2512 (1989);Phys. Rev. B 43:712 (1991).

    Google Scholar 

  12. M. Enz and R. Schilling,J. Phys. C: Solid State Phys. 19:1765 (1986); L711.

    Google Scholar 

  13. P. Hänggi,Z. Phys. B Condensed Matter 68:181 (1987).

    Google Scholar 

  14. E. Freidkin, P. S. Riseborough, and P. Hänggi,Z. Phys. B Condensed Matter 64:237 (1986).

    Google Scholar 

  15. W. Magnus, F. Oberhettinger, and R. P. Soni,Formulas and Theorems for the Special Functions of Mathematical Physics (Springer-Verlag, 1966).

  16. E. M. Cudnovsky,JETP 50:1035 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klik, I. Rotation of magnetization in unison and langevin equations for a large spin. J Stat Phys 66, 635–645 (1992). https://doi.org/10.1007/BF01060085

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01060085

Key words

Navigation