Skip to main content
Log in

On the approximation of invariant measures

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Given a discrete dynamical system defined by the map τ:XX, the density of the absolutely continuous (a.c.) invariant measure (if it exists) is the fixed point of the Frobenius-Perron operator defined on L1(X). Ulam proposed a numerical method for approximating such densities based on the computation of a fixed point of a matrix approximation of the operator. T. Y. Li proved the convergence of the scheme for expanding maps of the interval. G. Keller and M. Blank extended this result to piecewise expanding maps of the cube in ℝn. We show convergence of a variation of Ulam's scheme for maps of the cube for which the Frobenius-Perron operator is quasicompact. We also give sufficient conditions onτ for the existence of a unique fixed point of the matrix approximation, and if the fixed point of the operator is a function of bounded variation, we estimate the convergence rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Berman and R. Plemmons,Nonnegative Matrices in the Mathematical Sciences (Academic Press, New York, 1979).

    Google Scholar 

  2. M. Blank, Stochastic properties of deterministic dynamical systems,Sov. Sci. Rev. C. Math./Phys. 6:243–271 (1987).

    Google Scholar 

  3. F. Chatelin,Spectral Approximation of Linear Operators (Academic Press, New York, 1983).

    Google Scholar 

  4. N. Dunford and J. Schwartz,Linear Operators, Part I, General Theory (Wiley, New York, 1958).

    Google Scholar 

  5. J. Ding and T. Y. Li, Finite Markov approximation of the Frobenius-Perron operator, preprint (1990).

  6. P. Gora and A. Boyarsky, Compactness of invariant densities for families of expanding piecewise monotonic transformations, preprint (1987).

  7. P. Gora, A. Boyarsky, and H. Proppe, Constructive approximations to densities invariant under nonexpanding transformations,J. Stat. Phys. 51:179–194 (1987).

    Google Scholar 

  8. P. Gora and A. Boyarsky, Absolutely continuous measures for piecewise expanding C2 transformations in ℝn,Isr. J. Math. 67(3):272–286 (1989).

    Google Scholar 

  9. F. Hofbauer and G. Keller, Ergodic properties of invariant measures for piecewise monotonic transformations,Math. Z. 180:119–140 (1982).

    Google Scholar 

  10. C. T. Ionescu Tulcea and G. Marinescu, Théorie ergodique pour des classes d'opérations non complètement continues,Ann. Math. 52:140–147 (1950).

    Google Scholar 

  11. F. Hunt and W. Miller, In preparation.

  12. T. Kato,Perturbation Theory for Linear Operators (Springer-Verlag, Berlin, 1976).

    Google Scholar 

  13. G. Keller, Un théorème de la limite centrale pour une classe de transformations monotones par morceaux,C. R. Acad. Sci. Paris A.

  14. G. Keller, Stochastic stability in some chaotic dynamical systems,Monat. Math. 94:313–333 (1982).

    Google Scholar 

  15. G. Keller, Markov extensions, zeta functions, and Fredholm theory for piecewise invertible dynamical systems, University of Heidelberg preprint #346 (1986).

  16. U. Krengel,Ergodic Theorems (Walter de Gruyter, Berlin, 1985).

    Google Scholar 

  17. A. Lasota and M. Mackey,Probabilistic Properties of Deterministic Systems (Cambridge University Press, Cambridge, 1985).

    Google Scholar 

  18. T. Y. Li, Finite approximation for the Frobenius-Perron operator. A solution to Ulam's conjecture,J. Approx. Theory 17:177–186 (1976).

    Google Scholar 

  19. R. Mañé,Ergodic Theory and Differentiable Dynamics (Springer-Verlag, Berlin, 1987).

    Google Scholar 

  20. M. Rychlik, Bounded variation and invariant measures,Studia Math. 76:69–80 (1983).

    Google Scholar 

  21. H. Shigematsu, H. Mori, F. Yoshida, and H. Okamoto, Analytic study of power spectra of the tent maps near band splitting transitions,J. Stat. Phys. 30(3):649–679 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunt, F.Y., Miller, W.M. On the approximation of invariant measures. J Stat Phys 66, 535–548 (1992). https://doi.org/10.1007/BF01060079

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01060079

Key words

Navigation