Skip to main content
Log in

A multi-length-scale theory of the anomalous mixing-length growth for tracer flow in heterogeneous porous media

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We develop a multi-length-scale (multifractal) theory for the effect of rock heterogeneity on the growth of the mixing layer of the flow of a passive tracer through porous media. The multifractal exponent of the size of the mixing layer is determined analytically from the statistical properties of a random velocity (permeability) field. The anomalous diffusion of the mixing layer can occur both on finite and on asymptotic length scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Amirat, K. Hamdache, and A. Ziani, Homogénéisation d'équations hyperboliques du premier ordre et application aux écoulements miscibles en milieu poreux,Ann. Inst. Henri Poincaré 6:397 (1989).

    Google Scholar 

  2. J. A. Aronovitz and D. R. Nelson, Anomalous diffusion in steady fluid flow through a porous medium,Phys. Rev. A 30:1048 (1984).

    Google Scholar 

  3. A. Arya, T. A. Hewett, R. G. Larson, and L. W. Lake, Dispersion and reservoir heterogeneity, SPE 15386, 60th Annual Technical Conference of the Society of Petroleum Engineers, Las Vegas, Nevada (1985).

  4. A. A. Bakr, L. W. Gelhar, A. L. Gutjahr, and J. R. MacMillan, Stochastic analysis of spatial variable in subsurface flows, i 1. Comparison of one- and three-dimension flows,Water Resources Res. 14:263 (1978).

    Google Scholar 

  5. R. E. Collins,Flow of Fluids Through Porous Materials (Van Nostrand-Reinhold, Princeton, New Jersey, 1961).

    Google Scholar 

  6. G. Dagan, Solute transport in heterogenous porous formations,J. Fluid Mech. 145:151 (1984).

    Google Scholar 

  7. A. S. Emanuel, G. K. Alameda, R. A. Behrens, and T. A. Hewett, Reservoir performance prediction methods based on fractal geostatistics,SPE Reservoir Eng. 4:313 (1988).

    Google Scholar 

  8. D. S. Fisher, Random walks in random environments,Phys. Rev. A 30:960 (1984).

    Google Scholar 

  9. R. A. Freeze, Stochastic-conceptual analysis of one-dimensional groundwater flow in nonuniform homogeneous media,Water Resources Res. 11:725 (1975).

    Google Scholar 

  10. F. Furtado, J. Glimm, B. Lindquist, and F. Pereira, Multi-length scale components of the mixing length growth in tracer flow, inProceedings of the Emerging Technologies Conference, F. Kovarik, ed. (Houston, Texas, 1990), p. 251.

  11. F. Furtado, J. Glimm, B. Lindquist, and F. Pereira, Characterization of mixing length growth for flow in heterogeneous porous media, SPE 21233, inProceedings of the 11th SPE Symposium on Reservoir Simulation (1991).

  12. F. Furtado, J. Glimm, B. Lindquist, F. Pereira, and Q. Zhang, Time dependent anomalous diffusion for flow in multi-fractal porous media, inProceedings of the Workshop on Numerical Methods for the Simulation of Multiphase and Complex Flow, T. M. Verheggan, ed. (Springer-Verlag, New York, 1991).

    Google Scholar 

  13. L. W. Gelhar, Stochastic subsurface hydrology from theory to applications,Water Resources Res. 22:153S (1986).

    Google Scholar 

  14. L. W. Gelhar and C. L. Axness,Water Resources Res. 19:161 (1983).

    Google Scholar 

  15. J. Glimm and D. H. Sharp, A random field model for anomalous diffusion in heterogeneous porous media,J. Stat. Phys. 62:415 (1991).

    Google Scholar 

  16. N. Goldenfield, O. Martin, Y. Oono, and F. Liu, Anomalous dimensions and the renormalization group in a nonlinear diffusion process,Phys. Rev. Lett. 64:1361 (1990).

    Google Scholar 

  17. A. L. Gutjahr and L. W. Gelhar, Stochastic models of subsurface flow: Infinite versus finite domains and stationarity,Water Resources Res. 17:337 (1981).

    Google Scholar 

  18. T. A. Hewett and R. A. Behrens, Conditional simulation of reservoir heterogeneity with fractals, SPE 18326, SPE Annual Technical Conference and Exhibition, Houston, Texas (1988).

  19. H. Kesten and G. Papanicolaou, A limit theorem for turbulent diffusion,Comm. Math. Phys. 65:97 (1979).

    Google Scholar 

  20. P. R. King, The use of field theoretic method for the study of flow in a heterogeneous porous medium,J. Phys. A 20:3935 (1987).

    Google Scholar 

  21. J. Koplik, Creeping flow in two-dimensional networks,J. Fluid Mech. 119:219 (1982).

    Google Scholar 

  22. R. H. Kraichman, Eulerian and Lagrangian renormalization in turbulence theory,J. Fluid Mech. 83:349 (1977).

    Google Scholar 

  23. L. Lake and H. Carroll, eds.,Reservoir Characterization (Academic Press, 1986).

  24. A. Lallemand-Barres and P. Peaudecerf, Recherche des relations entre le valeur de la dispersivité macroscopic, ses autres caractéristiques et les conditions de mesure, Bulletin BRGM, 2e Série, Section III, No. 4 (1978).

  25. W. D. McComb,The Physics of Turbulence (Oxford University Press, Oxford, 1990).

    Google Scholar 

  26. S. P. Neuman, Universal scaling of hydraulic conductivities and dispersivities in geologic media,Water Resources Res. 26:1749 (1990).

    Google Scholar 

  27. S. P. Neuman and Y. K. Zhang, A quasi-linear theory of non-Fickian subsurface dispersion,Water Resources Res. 26:887 (1990).

    Google Scholar 

  28. P. J. Smith and C. E. Brown, Stochastic modeling of two-phase flow in porous media, SPE 11128, 57th Annual Fall Technical Conference and Exhibition of the Society of Petroleum Engineers, New Orleans, Louisiana (1982).

  29. L. Tartar, Nonlocal effects induced by homogeneization, inPartial Differential Equations and the Calculus of Variations, Vol. 2, Essays in Honor of Ennio De Giorgi (Birkhauser, 1989), pp. 925–938.

  30. C. L. Winter, C. M. Neuman, and S. P. Newman, A perturbation expansion for diffusion in a random velocity field,SIAM J. Appl. Math. 44:411 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q. A multi-length-scale theory of the anomalous mixing-length growth for tracer flow in heterogeneous porous media. J Stat Phys 66, 485–501 (1992). https://doi.org/10.1007/BF01060076

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01060076

Key words

Navigation