Skip to main content
Log in

Thermal cellular automata fluids

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The concepts of local temperature and local thermal equilibrium are introduced in the context of lattice gas cellular automata (LGGAs) whose dynamics conserves energy. Green-Kubo expressions for thermal transport coefficients, in particular for the heat conductivity, are derived in a form, equivalent to those for continuous fluids. All thermal transport coefficients are evaluated in Boltzmann approximation as thermal averages of matrix elements of the inverse Boltzmann collision operator, fully analogous to the results for continuous systems, and fully model-independent. The collision operator is expressed in terms of transition probabilities between in- and out-states. Staggered diffusivities arising from spuriously conserved quantities in LGCAs are also calculated. Examples of models with either cubic or hexagonal symmetries are discussed, where particles may or may not have internal energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Frisch, D. d'Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P. Rivet,Complex Systems 1:648 (1987); inLattice Gas Methods for Partial Differential Equations, G. D. Doolen, ed. (Addison-Wesley, 1989), p. 75.

    Google Scholar 

  2. M. H. Ernst, inFundamental Problems in Statistical Mechanics VII, H. van Beijeren, ed. (North-Holland, Amsterdam, 1990), p. 321.

    Google Scholar 

  3. B. Chopard and M. Droz,Phys. Lett. A 126:1476 (1988).

    Google Scholar 

  4. D. d'Humières, P. Lallemand, and U. Frisch,Europhys. Lett. 2:291 (1986); D. d'Humières and P. Lallemand,Helv. Phys. Acta 59:1231 (1986).

    Google Scholar 

  5. D. d'Humières, P. Lallemand, and G. Searby,Complex Systems 1:633 (1987).

    Google Scholar 

  6. S. Chen, H. Chen, and G. D. Doolen,Complex Systems 3:243 (1989); S. Chen, M. Lee, G. D. Doolen, and K. Zhao,Physica D 37:42 (1989).

    Google Scholar 

  7. K. Molvig, P. Donis, R. Miller, J. Myczkowski, and G. Vichniac, inCellular Automata and Modeling of Complex Systems, P. Mannville, R. Bidaux, N. Boccara, and G. Vichniac, eds. (Springer-Verlag, 1989).

  8. Y. Qian, Gaz sur réseaux et théorie cinétique sur réseaux appliquée à l'équation de Navier-Stokes, Thèse, Université Pierre et Marie Curie (1990).

  9. M. H. Ernst, inDiscrete Models of Fluid Dynamics, A. S. Alves, ed. (World Scientific, Singapore, 1991), p. 186.

    Google Scholar 

  10. R. Rechtman and A. Salcido, inDiscrete Models of Fluid Dynamics, A. S. Alves, ed. (World Scientific, Singapore, 1991), p. 208.

    Google Scholar 

  11. D. Bernardin, O. E. Sero-Guillaume, and C. H. Sun, inDiscrete Models of Fluid Dynamics, A. S. Alves, ed. (World Scientific, Singapore, 1991), p. 72.

    Google Scholar 

  12. S. R. de Groot and P. Mazur,N on-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962).

    Google Scholar 

  13. M. H. Ernst and J. W. Dufty,J. Stat. Phys. 58:57 (1990).

    Google Scholar 

  14. S. Chapman and T. G. Cowling,The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, Cambridge, 1939).

    Google Scholar 

  15. L. P. Kadanoff, G. McNamara, and G. Zanetti,Phys. Rev. A 40:4527 (1989); G. Zanetti,Phys. Rev. A 40:1539 (1989).

    Google Scholar 

  16. T. R. Kirkpatrick and M. H. Ernst,Phys. Rev. A, submitted.

  17. R. Brito and M. H. Ernst,Phys. Rev. A, to appear.

  18. B. Boghosian, in Proceedings LGA91-Nice,J. Stat. Phys., to appear.

  19. M. Hénon,Complex Systems 1:762 (1987).

    Google Scholar 

  20. J. P. Hansen and I. R. McDonnald,Theory of Simple Liquids (Academic Press, London, 1986).

    Google Scholar 

  21. J. A. McLennan,Introduction to Nonequilibrium Statistical Mechanics (Prentice-Hall, 1989).

  22. R. Schmitz and J. W. Dufty,Phys. Rev. A 41:4294 (1990).

    Google Scholar 

  23. R. Kirkpatrick, S. Das, M. H. Ernst, and J. Piasecki,J. Chem. Phys. 92:3768 (1990).

    Google Scholar 

  24. J. R. Dorfman and H. van Beijeren, inStatistical Mechanics, Part B: Time Dependent Processes, B. J. Berne, ed. (Plenum Press, New York, 1977), p. 65.

    Google Scholar 

  25. E. H. Hauge, inTransport Processes, G. Kirczenow and J. Marro, eds. (Springer-Verlag, Berlin, 1974), p. 338.

    Google Scholar 

  26. R. Brito, M. H. Ernst, and T. R. Kirkpatrick,J. Stat. Phys. 62:283 (1991).

    Google Scholar 

  27. B. Boghosian and C. D. Levermore, inDiscrete Kinetic Theory, Lattice Gas Dynamics and Foundations of Hydrodynamics, R. Monaco, ed. (World Scientific, Singapore, 1989).

    Google Scholar 

  28. M. H. Ernst, inLiquids, Freezing and the Glass Transition, D. Levesque, J. P. Hansen, and J. Zinn-Justin, eds. (Elsevier Science, Amsterdam, 1991).

    Google Scholar 

  29. S. P. Das an M. H. Ernst,Physica A, to be published.

  30. P. Grosfils, J. P. Boon, and P. Lallemand, in Proceedings LGA91-Nice,J. Stat. Phys., to appear.

  31. P. Grosfils, J. P. Boon, R. Brito, and M. H. Ernst, to be published.

  32. H. Bussemaker and M. H. Ernst, in Proceedings LGA91-Nice,J. Stat. Phys., to appear.

  33. M. A. van der Hoef and D. Frenkel,Phys. Rev. Lett. 66:1591 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ernst, M.H., Das, S.P. Thermal cellular automata fluids. J Stat Phys 66, 465–483 (1992). https://doi.org/10.1007/BF01060075

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01060075

Key words

Navigation