Skip to main content
Log in

Higher-order implicit strong numerical schemes for stochastic differential equations

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Higher-order implicit numerical methods which are suitable for stiff stochastic differential equations are proposed. These are based on a stochastic Taylor expansion and converge strongly to the corresponding solution of the stochastic differential equation as the time step size converges to zero. The regions of absolute stability of these implicit and related explicit methods are also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Arnold,Stochastic Differential Equations (Wiley, New York, 1974).

    Google Scholar 

  2. L. Arnold and V. Wihstutz, eds., Lyapunov Exponents (Springer Lecture Notes in Mathematics, Vol. 1186, 1986).

  3. Chien-Cheng Chang, Numerical solution of stochastic differential equations with constant diffusion coefficients,Math. Comput. 49:523–542 (1987).

    Google Scholar 

  4. G. Dahlquist, A special stability problem for linear multistep methods,BIT 3:27–43 (1963).

    Google Scholar 

  5. P. D. Drummond and I. K. Mortimer, Computer simulation of multiplicative stochastic differential equations, J. Comput. Phys., to appear.

  6. A. Greiner, W. Strittmatter, and J. Honerkamp, Numerical integration of stochastic differential equations,J. Slat. Phys. 51:95–108 (1987).

    Google Scholar 

  7. R. Z. Hasminski,Stochastic Stability of Differential Equations (Sijthoff & Noordhoff, Alphen aan den Rijn, 1980).

    Google Scholar 

  8. D. B. Hernandez and R. Spigler, Numerical stability of implicit Runge-Kutta methods for stochastic differential equations, Preprint, University of Padua (1989).

  9. J. R. Klauder and W. P. Petersen, Numerical integration of multiplicative-noise stochastic differential equations,SIAM J. Numer. Anal. 22:1153–1166 (1985).

    Google Scholar 

  10. P. E. Kloeden and E. Platen, A survey of numerical methods for stochastic differential equations,J. Stoch. Hydrol. Hydraul. 3:155–178 (1989).

    Google Scholar 

  11. P. E. Kloeden and E. Platen, The Stratonovich and Ito-Taylor expansions,Math. Nachr. 151: 33–50 (1991).

    Google Scholar 

  12. P. E. Kloeden and E. Platen, The Numerical Solution of Stochastic Differential Equations, Springer-Verlag, Applications of Mathematics Series No. 23, 1991.

  13. P. E. Kloeden, E. Platen, and I. Wright, The approximation of multiple stochastic integrals, J. Stoch. Anal. Appl., to appear.

  14. K. J. McNeil and I. J. D. Craig, An unconditional stable numerical scheme for nonlinear quantum optical systems-Quantised liit cycle behaviour in second harmonic generation, University of Waikato Research Report No. 166 (1988).

  15. G. N. Milstein, Approximate integration of stochastic differential equations,Theor. Prob. Appl. 19:557–562 (1974).

    Google Scholar 

  16. G. N. Milstein,The Numerical Integration of Stochastic Differential Equations (Urals University Press, Sverdlovsk, USSR, 1988) [in Russian].

    Google Scholar 

  17. E. Pardoux and D. Talay, Discretization and simulation of stochastic differential equations,Acta Appl. Math. 3:23–47 (1985).

    Google Scholar 

  18. W. P. Petersen,Stability and accuracy of simulations for stochastic differential equations, IPS Research Report No. 90-02, ETH Zürich (1990).

    Google Scholar 

  19. E. Platen, A Taylor formula for semimartingales solving a stochastic differential equation, in Springer Lecture Notes in Control and Information Science, Vol.36, pp. 163–172 (1981).

    Google Scholar 

  20. E. Platen, A generalized Taylor formula for solutions of stochastic differential equations,Sankhya 44A:163–172 (1982).

    Google Scholar 

  21. E. Platen, Zur zeitdiskreten Approximation von Itoprozessen, Diss. B., IMath, Akademie der Wissenschaften der DDR, Berlin (1984).

    Google Scholar 

  22. E. Platen and W. Wagner, On a Taylor formula for a class of Ito processes,Prob. Math. Stat. 3:37–51 (1982).

    Google Scholar 

  23. W. R.:umelin, Numerical treatment of stochastic differential equations,SIAM J. Numer. Anal. 19:604–613 (1982).

    Google Scholar 

  24. A. M. Smith and C. W. Gardiner, Simulation of nonlinear quantum damping using the positive representation, University of Waikato Research Report (1988).

  25. D. Talay, Analyse Numérique des Equations Différentielles Stochastiques, Thèse 3ème cycle, Université Provence (1982).

  26. W. Wagner and E. Platen,Approximation of Ito integral equations, Preprint ZIMM, Akedemie der Wissenschaften der DDR, Berlin (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kloeden, P.E., Platen, E. Higher-order implicit strong numerical schemes for stochastic differential equations. J Stat Phys 66, 283–314 (1992). https://doi.org/10.1007/BF01060070

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01060070

Key words

Navigation