Isotropic majority-vote model on a square lattice

Abstract

The stationary critical properties of the isotropic majority vote model on a square lattice are calculated by Monte Carlo simulations and finite size analysis. The critical exponentsν, γ, andβ are found to be the same as those of the Ising model and the critical noise parameter is found to beq c =0.075±0.001.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    G. Grinstein, C. Jayaparakash, and Yu He,Phys. Rev. Lett. 55:2527 (1985).

    Google Scholar 

  2. 2.

    C. H. Bennett and G. Grinstein,Phys. Rev. Lett. 55:657 (1985).

    Google Scholar 

  3. 3.

    H. W. J. Blöte, J. R. Heringa, A. Hoogland, and R. K. P. Zia,J. Phys. A 23:3799 (1990);Int. J. Mod. Phys. B 5:685 (1991).

    Google Scholar 

  4. 4.

    J. S. Wang and J. L. Lebowitz,J. Stat. Phys. 51:893 (1988).

    Google Scholar 

  5. 5.

    J. M. Gonzalez-Miranda, P. L. Garrido, J. Marro, and J. L. Lebowitz,Phys. Rev. Lett. 59:1934 (1987).

    Google Scholar 

  6. 6.

    M. C. Marques,J. Phys. A 22:4493 (1989);Phys. Lett. 145:379 (1990).

    Google Scholar 

  7. 7.

    T. M. Liggett,Interacting Particle Systems (Springer-Verlag, New York, 1985).

    Google Scholar 

  8. 8.

    L. Gray, inParticle Systems, Random Media and Large Deviations, R. Durrett, ed. (American Mathematical Society, Providence, Rhode Island, 1985), p. 149.

    Google Scholar 

  9. 9.

    R. J. Glauber,J. Math. Phys. 4:294 (1963).

    Google Scholar 

  10. 10.

    P. L. Garrido, A. Labarta, and J. Marro,J. Stat. Phys. 49:551 (1987).

    Google Scholar 

  11. 11.

    T. Tomé, M. J. de Oliveira, and M. A. Santos,J. Phys. A 24:3677 (1991).

    Google Scholar 

  12. 12.

    P. A. Ferrari, J. L. Lebowitz, and C. Maes,J. Stat. Phys. 53:295 (1988).

    Google Scholar 

  13. 13.

    V. Privman,Finite-Size Scaling and Numerical Simulation of Statistical Systems (World Scientific, Singapore, 1990).

    Google Scholar 

  14. 14.

    K. Binder,Z. Phys. B 43:119 (1981).

    Google Scholar 

  15. 15.

    M. E. Fisher, inCritical Phenomena, M. S. Green, ed. (Academic Press, New York, 1971).

    Google Scholar 

  16. 16.

    A. D. Bruce,J. Phys. A 18:L873 (1985).

    Google Scholar 

  17. 17.

    T. W. Burkhardt and B. Derrida,Phys. Rev. B 32:7273 (1985).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Oliveira, M.J. Isotropic majority-vote model on a square lattice. J Stat Phys 66, 273–281 (1992). https://doi.org/10.1007/BF01060069

Download citation

Key words

  • Majority-vote models
  • stochastic spin systems
  • Monte Carlo simulation