Advertisement

Journal of Statistical Physics

, Volume 66, Issue 1–2, pp 273–281 | Cite as

Isotropic majority-vote model on a square lattice

  • M. J. de Oliveira
Articles

Abstract

The stationary critical properties of the isotropic majority vote model on a square lattice are calculated by Monte Carlo simulations and finite size analysis. The critical exponentsν, γ, andβ are found to be the same as those of the Ising model and the critical noise parameter is found to beq c =0.075±0.001.

Key words

Majority-vote models stochastic spin systems Monte Carlo simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Grinstein, C. Jayaparakash, and Yu He,Phys. Rev. Lett. 55:2527 (1985).Google Scholar
  2. 2.
    C. H. Bennett and G. Grinstein,Phys. Rev. Lett. 55:657 (1985).Google Scholar
  3. 3.
    H. W. J. Blöte, J. R. Heringa, A. Hoogland, and R. K. P. Zia,J. Phys. A 23:3799 (1990);Int. J. Mod. Phys. B 5:685 (1991).Google Scholar
  4. 4.
    J. S. Wang and J. L. Lebowitz,J. Stat. Phys. 51:893 (1988).Google Scholar
  5. 5.
    J. M. Gonzalez-Miranda, P. L. Garrido, J. Marro, and J. L. Lebowitz,Phys. Rev. Lett. 59:1934 (1987).Google Scholar
  6. 6.
    M. C. Marques,J. Phys. A 22:4493 (1989);Phys. Lett. 145:379 (1990).Google Scholar
  7. 7.
    T. M. Liggett,Interacting Particle Systems (Springer-Verlag, New York, 1985).Google Scholar
  8. 8.
    L. Gray, inParticle Systems, Random Media and Large Deviations, R. Durrett, ed. (American Mathematical Society, Providence, Rhode Island, 1985), p. 149.Google Scholar
  9. 9.
    R. J. Glauber,J. Math. Phys. 4:294 (1963).Google Scholar
  10. 10.
    P. L. Garrido, A. Labarta, and J. Marro,J. Stat. Phys. 49:551 (1987).Google Scholar
  11. 11.
    T. Tomé, M. J. de Oliveira, and M. A. Santos,J. Phys. A 24:3677 (1991).Google Scholar
  12. 12.
    P. A. Ferrari, J. L. Lebowitz, and C. Maes,J. Stat. Phys. 53:295 (1988).Google Scholar
  13. 13.
    V. Privman,Finite-Size Scaling and Numerical Simulation of Statistical Systems (World Scientific, Singapore, 1990).Google Scholar
  14. 14.
    K. Binder,Z. Phys. B 43:119 (1981).Google Scholar
  15. 15.
    M. E. Fisher, inCritical Phenomena, M. S. Green, ed. (Academic Press, New York, 1971).Google Scholar
  16. 16.
    A. D. Bruce,J. Phys. A 18:L873 (1985).Google Scholar
  17. 17.
    T. W. Burkhardt and B. Derrida,Phys. Rev. B 32:7273 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • M. J. de Oliveira
    • 1
  1. 1.Department of MathematicsRutgers UniversityNew Brunswick

Personalised recommendations