Skip to main content
Log in

Mathematical representations of cancer chemotherapy effects

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Predictive models have been developed to simulate cancer cell populations under treatment with cytotoxic drugs, with both direct-acting and cell cycle specific drugs being considered. Models of cell growth kinetics have been combined with simple pharmacokinetic models to complete the cell-drug interaction system. The models depend on knowing the distribution of generation time in the cell population, the cell-drug interaction, and the local concentration of the drug at the effective site. All of the quantities can be obtained, in principle, from separate experiments and combined to form a model describing several aspects of the cell-drug response system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Fredrickson, D. Ramkrishna, and H. M. Tsuchiya. Statistics and dynamics of procaryotic cell populations.Math. Biosci.,1, 327–374 (1967).

    Article  Google Scholar 

  2. G. H. Weiss. Equations for the age structure of growing populations.Bull. Math. Biophys.,30, 427–435 (1968).

    Article  CAS  PubMed  Google Scholar 

  3. H. M. Tsuchiya, A. G. Fredrickson, and R. Aris. Dynamics of microbial cell populations.Advan. Chem. Engr.,6, 125–206 (1966).

    Article  CAS  Google Scholar 

  4. W. C. Werkheiser. Mathematical simulation in chemotherapy.Ann. N.Y. Acad. Sci.,186, 343–358 (1971).

    Article  CAS  PubMed  Google Scholar 

  5. O. Scherbaum and G. Rasch. Cell size distribution and single cell growth inTetrahymena pyriformis GL.Acta Pathol. Microbiol. Scand.,41, 161–182 (1957).

    Article  CAS  PubMed  Google Scholar 

  6. H. von Foerster. Some remarks on changing populations. In F. Stohlman, Jr. (ed.),The Kinetics of Cellular Proliferation, Grune and Stratton, New York, 1939, pp. 382–407.

    Google Scholar 

  7. E. Trucco. Mathematical models for cellular systems. The von Foerster equation. Part I.Bull. Math. Biophys.,27, 285–304 (1965).

    Article  CAS  PubMed  Google Scholar 

  8. E, Trucco. Mathematical models for cellular systems. The von Foerster equation. Part II.Bull. Math. Biophys.,27, 449–471 (1965).

    Article  CAS  PubMed  Google Scholar 

  9. S. I. Rubinow. A maturity-time representation for cell populations.Biophys. J.,8, 1055–1073 (1968).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. J. G. Wagner.Biopharmaceutics and Relevant Pharmacokinetics, Drug Intelligence Publications, Hamilton Press, Hamilton, Ill., 1971.

    Google Scholar 

  11. K. B. Bischoff, R. L. Dedrick, D. S. Zaharko, and J. A. Longstreth. Methotrexate pharmaco-kinetics.J. Pharm. Sci.,60, 1128–1133 (1971).

    Article  CAS  PubMed  Google Scholar 

  12. D. M. Prescott. Variations in the individual generation times ofTetrahymena geleii HS.Exptl. Cell Res.,16, 279–281 (1959).

    Article  CAS  PubMed  Google Scholar 

  13. F. H. Miller.Partial Differential Equations, Wiley, New York, 1941.

    Google Scholar 

  14. W. J. Jusko. Pharmacodynamics of chemotherapeutic effects: Dose-time-response relationships for phase-nonspecific agents.J. Pharm. Sci.,60, 892–895 (1971).

    Article  CAS  PubMed  Google Scholar 

  15. W. J. Jusko. A pharmacodynamic model for cell cycle-specific chemotheraprutic agents.J. Pharmacokinct. Biopharm., in press.

  16. S. E. Shackney. A computer model for tumor growth and chemotherapy, and its application to L1210 leukemia treated with cytosine arabinoside.Cancer Chemotherap. Rep.,54, 399–429 (1970).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Himmelstein, K.J., Bischoff, K.B. Mathematical representations of cancer chemotherapy effects. Journal of Pharmacokinetics and Biopharmaceutics 1, 51–68 (1973). https://doi.org/10.1007/BF01060027

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01060027

Key words

Navigation