Skip to main content
Log in

A pharmacokinetic-pharmacodynamic model for quantal responses with thiopental

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

The pharmacokinetic-pharmacodynamic model developed here characterizes the relationship between simulated plasma concentrations of thiopental and two dichotomous endpoints determined at induction of anesthesia: loss of voluntary motor power (clinical endpoint), and burst suppression of the electroencephalogram (EEG endpoint). The model incorporated data from two separate thiopental patient studies: a pharmacokinetic study with 21 males, and a pharmacodynamic study with 30 males. In the pharmacodynamic study, cumulative quantal dose-response curves for the clinical and EEG endpoints were developed from observations made during a constant-rate infusion of thiopental. Population mean parameters, derived from the bolus pharmacokinetic thiopental study, were used to simulate concentration-time data for the 150 mg·min1 thiopental infusion rate used in the dose-response study. A single biophase model incorporating the two endpoints was generated, combining the pharmacokinetic and pharmacodynamic data from the two groups. Estimates of the mean effective thiopental concentrations affecting 50% of the population (EC50s) for the clinical and EEG endpoints were 11.3 and 33.9μg·ml−1, respectively. The half-time for equilibration between arterial thiopental and the effect compartment was 2.6 min. These results are in reasonable agreement with previously described quantal concentration-response data, and with pharmacodynamic models developed for graded EEG responses. Simulation of bolus doses of thiopental with the new model provided ED50s for the clinical and EEG endpoints of 265 mg and 796 mg, respectively; the dose predicted to produce loss of voluntary motor power in 90% of an adult male population was 403 mg. A model combining population pharmacokinetics with cumulative dose-response relationships could prove useful in predicting dosage regimens for those drugs with responses that are categorical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. B. Sheiner, D. R. Stanski, S. Vozeh, R. D. Miller, and J. Ham. Simultaneous modeling of pharmacokinetics and pharmacodynamics: Application tod-tubocurarine.Clin. Pharmacol. Ther. 25:358–371 (1979).

    CAS  PubMed  Google Scholar 

  2. M. J. Avram, T. C. Krejcie, and T. K. Henthorn. The relationship of age to the pharmacokinetics of early drug distribution: The concurrent disposition of thiopental and indocyanine green.Anesthesiology 72:403–411 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. M. J. Avram, R. Sanghvi, T. K. Henthorn, T. C. Krejcie, C. A. Shanks, R. J. Fragen, K. A. Howard, and D. A. Kaczynski. Determinants of thiopental induction dose requirements.Anest. Analg. 76:10–17 (1993).

    Article  CAS  Google Scholar 

  4. M. J. Avram and T. C. Krejcie. Determination of sodium pentobarbital and either sodium methohexital or sodium thiopental in plasma by high performance liquid chromatography with ultraviolet detection.J. Chromatog. 414:484–491 (1987).

    Article  CAS  Google Scholar 

  5. M. Berman and M. Weiss.SAAM Users Manual, DHEW Publication (NIH), Bethesda, Md., 1978.

    Google Scholar 

  6. R. C. Boston, P. C. Grief, and M. Berman. Conversational SAAM—an interactive program for kinetic analysis of biological systems.Comput. Prog. Biomed. 13:111–119 (1981).

    Article  CAS  Google Scholar 

  7. A. Lyne, R. Boston, K. Pettigrew, and L. Zech. EMSA: a SAAM service for the estimation of population parameters based on model fits to identically replicated experiments.Comput. Meth. Prog. Biomed. 38:117–151 (1992).

    Article  CAS  Google Scholar 

  8. J. A. Jaquez and T. J. Perry. Parameter estimation: local identifiability of parameters.Am. J. Physiol. 258:E727-E736 (1990).

    Google Scholar 

  9. T. K. Henthorn, M. J. Avram, T. C. Krejcie, C. A. Shanks, A. Asada, and D. A. Kaczynski. Minimal compartmental model of circulatory mixing of indocyanine green.Am. J. Physiol. 262:H903-H910 (1992).

    CAS  PubMed  Google Scholar 

  10. D. P. Crankshaw and J. Allt-Graham. ED50 values for thiopentone, methohexital, propanidid and alfathesin: A clinical experiment.Anaesth. Intensive Care 6:36–43 (1978).

    CAS  PubMed  Google Scholar 

  11. D. K. Kiersley, R. G. Bickford, and A. Faulconer Jr. Electroencephalographic patterns produced by thiopental sodium during surgical operations: Description and classification.Br. J. Anaesth. 23:141–152 (1951).

    Article  Google Scholar 

  12. T. C. Krejcie. Using a microcomputer to convert percent response values to probits.Int. J. Clin. Monit. Comput. 8:19–23 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. K. E. Becker. Plasma levels of thiopental necessary for anesthesia.Anesthesiology 49:192–196 (1978).

    Article  PubMed  Google Scholar 

  14. L. E. Mather, L. T. Seow, J. G. Roberts, G. K. Gourlay, and M. J. Cousins. Development of a model for integrated pharmacokinetic and pharmacodynamic studies of intravenous anaesthetic agents: Application to minaxolone.Eur. J. Clin. Pharmacol. 19:371–381 (1981).

    Article  CAS  PubMed  Google Scholar 

  15. D. R. Stanski, R. J. Hudson, T. D. Homer, L. J. Saidman, and L. Meathe. Pharmacodynamic modeling of thiopental anesthesia.J. Pharmacokin. Biopharm. 12:223–240 (1984).

    Article  CAS  Google Scholar 

  16. T. D. Homer and D. R. Stanski. The effect of increasing age on thiopental disposition and anesthetic requirement.Anesthesiology 62: 714–724 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. D. R. Stanski and P. O. Maitre. Population pharmacokinetics and pharmacodynamics of thiopental: The effect of age revisited. Anesthesiology72:412–422 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. O. R. Hung, J. R. Varvel, S. L. Shafer, and D. R. Stanski. Thiopental pharmacodynamics II. Quatitation of clinical and electroencephalic depth of anesthesia.Anesthesiology 77:237–244 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. J. H. Christensen and F. Andreasen. Individual variation in response to thiopental.Acta Aneasth. Scand. 22:303–313 (1978).

    Article  CAS  Google Scholar 

  20. S. Muravchick. Effect of age and premedication on thiopental sleep dose.Anesthesiology 61:333–336 (1984).

    Article  CAS  PubMed  Google Scholar 

  21. M. Naguib, A. Sari-Kouzel, M. Seraj, M. El-Gammal, and M. Gomma. Induction dose-response studies with propofol and thiopentone.Br. J. Anaesth. 68:308–310 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. J. R. Jacobs and J. G. Reves. Effect site equilibration time is a determinant function of dose requirement.Anesth. Analg. 76:1–6 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shanks, C.A., Avram, M.J., Krejcie, T.C. et al. A pharmacokinetic-pharmacodynamic model for quantal responses with thiopental. Journal of Pharmacokinetics and Biopharmaceutics 21, 309–321 (1993). https://doi.org/10.1007/BF01059782

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01059782

Key words

Navigation