Advertisement

Journal of Pharmacokinetics and Biopharmaceutics

, Volume 14, Issue 5, pp 495–509 | Cite as

Effects of the rate and composition of fluid replacement on the pharmacokinetics and pharmacodynamics of intravenous furosemide

  • Tun Li
  • Myung G. Lee
  • Win L. Chiou
Article

Abstract

Effects of differences in the rate and composition of intravenous fluid replacement for urine loss on the pharmacokinetics and pharmacodynamics of furosemide were evaluated using the dog as a model animal. Each of six dogs received 8-hr constant intravenous infusion of 20 mg (15 mg used in one dog) of furosemide with 0% replacement (treatment I), 50% replacement (treatment II), and 100% replacement (treatment III) with lactated Ringer's solution, as well as with 100% replacement with 5% dextrose in water (treatment IV). Most pharmacokinetic parameters, such as plasma clearance, steady-state volume of distribution, mean residence time, and terminal half-life, were essentially the same in all four treatments. Renal clearances and urinary excretion rates of the drug in treatments II–IVwere essentially the same, but about 20% higher than those in treatment I.In spite of the similarities in kinetic properties, diuretic and/or natriuretic effects from furosemide were markedly different among the four treatments. For example, mean 10-hr urine outputs were 646, 1046, 3156, and 1976 ml and mean 10-hr sodium excretions were 87.0, 142, 383, and 97.2 mmole for treatments I–IV,respectively. Except for treatment III,diuresis and/or natriuresis were found to be time-dependent, generally decreasing with time until reaching a low plateau during later hours of infusion. The present findings also showed that (1)no fluid replacement and 100% replacement with 5% dextrose solution both produced the same degree of severe acute tolerance in natriuresis, indicating the insignificance of water compensation in tolerance development; (2)in treatment II,where neutral sodium balance was achieved, the development of acute tolerance in diuresis and natriuresis can mainly be attributed to negative water balance under this special condition; (3)at steady state the hourly diuresis and natriuresis could differ up to about ten times between treatments. Some implications for the kinetic/dynamic relationship or modeling, in the clinical use, and in the bioequivalence evaluation of dosage forms are discussed.

Key words

furosemide pharmacokinetics pharmacodynamics fluid replacement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. E. Earley and J. A. Martino. Influence of sodium balance on the ability of diuretics to inhibit tubular reabsorption.Circulation 42:323–334 (1970).PubMedCrossRefGoogle Scholar
  2. 2.
    R. A. Branch, C. J. C. Roberts, M. Homeida, and D. Levine. Determinants of response to furosemide in normal subjects.Br. J. Clin. Pharmacol. 4:121–127 (1977).PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    M. Homeida, C. Roberts, and R. A. Branch. Influence of probenecid and spironolactone on furosemide kinetics and dynamics in man.Clin. Pharmacol. Ther. 22:402–409 (1979).Google Scholar
  4. 4.
    C. S. Wilcox, W. E. Mitch, R. A. Kelly, K. Skorecki, T. W. Meyer, P. A. Friedman, and P. F. Souney. Response of the kidney to furosemide. I. Effect of salt intake and renal compensation.J. Lab. Clin. Med. 102:450–458 (1983).PubMedGoogle Scholar
  5. 5.
    T. Kahn, A. M. Kaufman, and F. L. Mac-Moune. Response to repeated furosemide administration on low chloride and low sodium intake in the rat.Clin. Sci. 64:565–572 (1983).PubMedGoogle Scholar
  6. 6.
    M. M. Hammarlund, B. Odlind, and L. K. Paalzow. Acute tolerance to furosemide in humans. Pharmacokinetic-pharmacodynamic modeling.J. Pharmacol. Exp. Ther. 233:447–453 (1985).PubMedGoogle Scholar
  7. 7.
    E. S. Waller, S. F. Hamilton, J. W. Massareth, M. A. Sharanevych, R. V. Smith, G. J. Yakatan, and J. T. Doluisio. Disposition and absolute bioavailability of furosemide in healthy males.J. Pharm. Sci. 71:1105–1108 (1982).PubMedCrossRefGoogle Scholar
  8. 8.
    J. G. Copeland, D. W. Campbell, J. R. Plachetka, N. W. Salomon, and D. F. Larson. Diuresis with continuous infusion of furosemide after cardiac surgery.Am. J. Surg. 146:796–799 (1983).PubMedCrossRefGoogle Scholar
  9. 9.
    A. Ebihara, K. Tawara, and T. Oka. Pharmacodynamic and pharmacokinetic study after slow release formulations of furosemide in man.Arzneim. Forsch./Drug Res. 33:163–166 (1983).Google Scholar
  10. 10.
    J. J. McNeil, F. J. E. Vajda, V. Vuayasekaren, and W. J. Louis. Bioavailability comparison of two proprietary preparations of furosemide.Med. J. Austr. 2:505–507 (1977).Google Scholar
  11. 11.
    D. M. Paton. Bioavailability of two preparations of furosemide.N. Z. Med. J. 91:208–210 (1980).PubMedGoogle Scholar
  12. 12.
    K. Uchino, S. Isozaki, J. Amano, N. Tanaka, Y. Saitoh, F. Nakagawa, Z. Tamura, and H. Oka. Clinical pharmacokinetics and diuretic effect of furosemide in plain tablet and retard capsule with normal subjects and cirrhotic patients.J. Pharmacobiodyn. 6:684–691 (1983).PubMedCrossRefGoogle Scholar
  13. 13.
    S. Kaojaren, B. Day, and D. C. Brater. The time course of furosemide into urine: An independent determinant of overall response.Kidney Int. 22:69–74 (1982).CrossRefGoogle Scholar
  14. 14.
    D. E. Smith, W. L. Gee, D. C. Brater, E. T. Lin, and L. Z. Benet. Preliminary evaluation of furosemide-probenecid interactions in humans.J. Pharm. Sci. 69:571–575 (1980).PubMedCrossRefGoogle Scholar
  15. 15.
    D. C. Brater, P. Chennavasin, and R. Seiwell. Furosemide in patients with heart failure: Shift in dose-response curves.Clin. Pharmacol. Ther. 28:182–186 (1980).PubMedCrossRefGoogle Scholar
  16. 16.
    D. C. Brater, P. Chennavasin, B. Day, A. Burdetta, and S. Anderson. Bumetanide and furosemide.Clin. Pharmacol. Ther. 34:207–213 (1983).PubMedCrossRefGoogle Scholar
  17. 17.
    M. R. Kelly, A. D. Blair, A. W. Forey, N. A. Smidt, and R. E. Cutler. A comparison of the diuretic response to oral and intravenous furosemide in “diuretic-resistant” patients.Curr. Ther. Res. 21:1–9 (1977).PubMedGoogle Scholar
  18. 18.
    D. E. Smith, E. T. Lin, and L. Z. Benet. Absorption and disposition of furosemide in healthy volunteers, measured with a metabolite-specific assay.Drug Metab. Dispos. 8:337–342 (1980).PubMedGoogle Scholar
  19. 19.
    F. Andreasen, C. K. Christensen, F. K. Jacobsen, J. Jansen, C. E. Mogensen, and O. L. Pedersen. The individual variation in pharmacokinetics and pharmacodynamics in young normal male subjects.Eur. J. Clin. Invest. 12:247–255 (1982).PubMedCrossRefGoogle Scholar
  20. 20.
    M. G. Lee, M. L. Chen, and W. L. Chiou. Pharmacokinetics of blood II: Unusual distribution and storage effect of furosemide.Res. Commun. Chem. Pathol. Pharmacol. 34:17–28 (1981).PubMedGoogle Scholar
  21. 21.
    M. G. Lee and W. L. Chiou. Evaluation of potential causes for the incomplete bioavailability of furosemide: Gastric first-pass metabolism,J. Pharmacokin. Biopharm. 11:623–640 (1983).CrossRefGoogle Scholar
  22. 22.
    C. Y. Lui, M. G. Lee, and W. L. Chiou. Concentration andpH dependent steady-state volume of distribution of methotrexate estimated by a simple physiologically based method.J. Pharmacokin. Biopharm. 12:597–610 (1984).CrossRefGoogle Scholar
  23. 23.
    W. L. Chiou, G. Lam, M. L. Chen, and M. G. Lee. Effect of arterial-venous plasma concentration differences on the determination of mean residence time of drug in the body.Res. Commun. Chem. Pathol. Pharmacol. 35:17–26 (1982).PubMedGoogle Scholar
  24. 24.
    W. L. Chiou. Mean hepatic transit time in determinations of mean absorption time.J. Pharm. Sci. 72:1365–1368 (1983).PubMedCrossRefGoogle Scholar
  25. 25.
    L. Z. Benet and R. L. Galeazzi. Noncompartmental determination of the steady state volume of distribution.J. Pharm. Sci. 68:1071–1074 (1979).PubMedCrossRefGoogle Scholar
  26. 26.
    W. L. Chiou. New calculation method for mean apparent drug volume of distribution and application to rational dosage regimens.J. Pharm. Sci. 68:1067–1069 (1979).PubMedCrossRefGoogle Scholar
  27. 27.
    J. T. Helwig and K. A. Council.SAS User's Guide, SAS Instruments, 1979.Google Scholar
  28. 28.
    W. L. Chiou. Compartment- and model-independent linear plateau principle of drugs during a constant rate absorption or intravenous infusion.J. Pharmacokin. Biopharm. 8:311–318 (1980).CrossRefGoogle Scholar
  29. 29.
    M. G. Lee, T. Li, and W. L. Chiou. Effect of intravenous infusion time on the pharmacokinetics and pharmacodynamics of the same total dose of furosemide.Biopharm. Drug Dispos., in press.Google Scholar
  30. 30.
    D. C. Brater. Resistance to loop diuretics. Why it happens and what to do about it.Drugs 30:427–443 (1985).PubMedCrossRefGoogle Scholar
  31. 31.
    W. D. Sansum and R. T. Woodyatt. Studies on the theory of diuresis. VII. Timed interval injection of glucose at lower rates.J. Biol. Chem. 30:155–173 (1917).Google Scholar
  32. 32.
    B. Beermann. Kinetics and dynamics of furosemide and slow-acting furosemide.Clin. Pharmacol. Ther. 32:584–591 (1982).PubMedCrossRefGoogle Scholar
  33. 33.
    B. K. Martin, M. Uihlein, R. M. J. Ings, L. A. Steven, and J. M. McEwen. Comparative bioavailability of two furosemide formulations in humans.J. Pharm. Sci. 73:437–441 (1984).PubMedCrossRefGoogle Scholar
  34. 34.
    E. Dalen and B. Lindstrom. Bioavailability of two furosemide preparations.Br. J. Clin. Pharmacol. 6:537–538 (1978).PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    L. Z. Benet. Pharmacokinetics/pharmacodynamics of furosemide in man: A review.J. Pharmacokin. Biopharm. 7:1–27 (1979).CrossRefGoogle Scholar
  36. 36.
    D. C. Brater. Clinical use of loop diuretics.Hasp. Form. 1983(October):962–975.Google Scholar
  37. 37.
    D. E. Smith, D. C. Brater, E. T. Lin, and L. Z. Benet. Attenuation of furosemide's diuretic effect by indomethacin: Pharmacokinetic evaluation.J. Pharmacokin. Biopharm. 7:265–274 (1979).CrossRefGoogle Scholar
  38. 38.
    P. Chennavasin, R. Seiwell, D. C. Brater, and W. M. Liang. Pharmacodynamic analysis of the furosemide-probenecid interaction in man.Kidney Int. 16:187–195 (1979).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Tun Li
    • 1
  • Myung G. Lee
    • 1
  • Win L. Chiou
    • 1
  1. 1.Department of Pharmacodynamics, College of PharmacyUniversity of Illinois at ChicagoChicago

Personalised recommendations