Journal of Pharmacokinetics and Biopharmaceutics

, Volume 14, Issue 5, pp 469–493 | Cite as

Receptor-mediated pharmacodynamics of prednisolone in the rat

  • F. Douglas Boudinot
  • Robin D'Ambrosio
  • William J. Jusko


A phartnacokinetic/pharmacodynamic model describing receptor-mediated effects of prednisolone is presented. The basis of the model is the generally accepted mechanism of action of steroid hormones in which corticosteroids bind to cytosolic receptors forming steroid-receptor complexes, which are activated and translocated into the nucleus. There the complexes associate with specific DNA sequences and modulate the rate of transcription of DNA into specific RNAs that code for the synthesis of proteins that elicit biological responses. Prednisolone, 5 or 50 mg/kg, was administered intravenously to adrenalectomized rats. Total plasma, free plasma, CBG-free plasma, and liver prednisolone concentrations were measured simultaneously with free hepatic cytosolic glucocorticoid receptor concentrations and tyrosine aminotransferase (TAT) activity of the liver as a function of time. The association/dissociation kinetics of prednisolone binding to the glucocorticoid receptor were measured separately in vitroat 37°C. Total plasma, free plasma, and CBG-free plasma prednisolone concentrations could be used equally well in the model to account for the time course of receptor concentrations and TAT activity. However, use of liver steroid concentrations resulted in an overestimation of receptor depletion. Steroid concentrations in plasma increased 20 to 30-fold with a tenfold increase in dose, but receptor occupancy and TAT activity over time increased about threefold. While prednisolone pharmacokinetics were dose-dependent, parameters describing receptor kinetics and TAT activity were constant at each prednisolone dose. The major determinants of receptor-mediated glucocorticoid activity are confirmed to be the availability of the receptor, drug-receptor dissociation rate, and corticosteroid persistence in the biophase.

Key words

prednisolone receptor kinetics tyrosine aminotransferase (TAT) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Levy. Kinetics of pharmacologic effects.Clin. Pharmacol. Ther. 7:362–372 (1966).PubMedGoogle Scholar
  2. 2.
    E. J. Ariens. Drug levels in the target tissue and effect.Clin. Pharmacol. Ther. 16:155–175 (1974).PubMedGoogle Scholar
  3. 3.
    N. H. G. Holford and L. B. Sheiner. Pharmacokinetic and pharmacodynamic modelingin vivo.CRC Crit. Rev. Bioeng. 5:273–322 (1981).Google Scholar
  4. 4.
    B. Oosterhuis. R. J. M. Ten Berge, H. P. Sauerwein, E. Endert, P. T. A. Schellekens, and C. J. Van Boxtel. Pharmacokinetic-pharmacodynamic modeling of prednisolone induced lymphocytopenia in man.J. Pharmacol. Exp. Ther. 229:539–545 (1984).PubMedGoogle Scholar
  5. 5.
    L. K. Paalzow. Integrated pharmacokinetic-pharmacodynamic modeling of drugs acting on the CNS.Metab. Rev. 15:383–400 (1984).CrossRefGoogle Scholar
  6. 6.
    M. L. Jack, W. A. Colburn, N. M. Spirt, G. Bautz, M. Zanko, W. D. Horst, and R. A. O'Brien. A pharmacokinetic/pharmacodynamic/receptor binding model to predict the onset and duration of pharmacological activity of the benzodiazepines.Prog. Neuropsychopharmacol. Biol. Psychiat. 7:629–635 (1983).CrossRefGoogle Scholar
  7. 7.
    E. V. Jenson and H. I. Jacobson. Basic guides to the mechanism of estrogen action.Recent Prog. Horm. Res. 18:387–414 (1962).Google Scholar
  8. 8.
    J. D. Baxter and J. W. Funder. Hormone receptors.N. Engl. J. Med. 301:1149–1161 (1979).PubMedCrossRefGoogle Scholar
  9. 9.
    A. Munck and K. Leung. In J. R. Pasqualini (ed.),Glucocorticoid Receptors and Mechanism of Action of Steroid Hormones, Marcel Dekker, New York, 1977, pp. 311–397.Google Scholar
  10. 10.
    M. Izawa, A. Yoshida, and S. Ichii. Dynamics of glucocorticoid receptor and induction of tyrosine aminotransferase in rat liver.Endocrinol. Japon. 29:209–218 (1982).CrossRefGoogle Scholar
  11. 11.
    T. J. Schmidt and G. Litwack. Activation of the glucocorticoid-receptor complex.Physiol. Rev. 62:1131–1192 (1982).PubMedGoogle Scholar
  12. 12.
    G. G. Rousseau. Control of gene expression by glucocorticoid hormones.Biol. Chem. J. 225:1–12 (1984).Google Scholar
  13. 13.
    G. J. Blackwell, R. Carnuccio, M. DiRosa, R. J. Flower, L. Parente, and P. Pessico. Macrocortin: A polypeptide causing anti-phospholipase effect of glucocorticoids.Nature 287:147–149 (1980).PubMedCrossRefGoogle Scholar
  14. 14.
    P. L. Ballard, J. D. Baxter, S. J. Higgins, G. G. Rousseau, and G. M. Tomkins. General presence of glucocorticoid receptors in mammalian tissues.Endocrinology 94:998–1002 (1974).PubMedCrossRefGoogle Scholar
  15. 15.
    A. M. P. Saaverdra-Delgrado, K. P. Mathews, P. M. Pan, D. R. Kay, and M. L. Mulenberg. Dose response studies of the suppression of whole blood histamine and basophil counts of prednisone.J. Allergy Clin. Immunol. 66:464–471 (1980).CrossRefGoogle Scholar
  16. 16.
    R. Ellul-Micallef and F. F. Fenech. Intravenous prednisolone in chronic bronchial asthma.Thorax 30:312–315 (1975).PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    H. Kitagawa, T. Mohri, and M. Kitagawa. Comparative studies on anti-inflammatory effect and biological fates of 21-phosphates and -sulfates of dexamethasone and prednisolone,Arzneim. Forsch. 22:402–410 (1972).Google Scholar
  18. 18.
    M. Kalimi, M. Beato, and P. Feigelson. Interaction of glucocorticoids with rat liver nuclei. I. Role of the cytosol proteins.Biochemistry 12:3365–3371 (1973).PubMedCrossRefGoogle Scholar
  19. 19.
    C. R. Wira and A. Munck. Glucocorticoid-receptor complexes in rat thymus cells.J. Biol. Chem. 249:5328–5336 (1974).PubMedGoogle Scholar
  20. 20.
    F. Payvar, O. Wrange, J. Carlstedt-Duke, S. Okret, J.-A. Gustafsson, and K. R. Yamamoto. Purified glucocorticoid receptors binding selectivelyin vitro to a cloned DNA fragment whose transcription is regulated by glucocorticoidsin vivo.Proc. Natl. Acad. Sci. USA 78:6628–6632 (1981).PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    M. Pfahl. Specific binding of the glucocorticoid-receptor complex to the mouse mammary tumor proviral promotor region.Cell 31:475–482 (1982).PubMedCrossRefGoogle Scholar
  22. 22.
    B. M. Raaka and H. H. Samuels. The glucocorticoid receptor in GH1 cells.J. Biol. Chem. 258:417–425 (1983).PubMedGoogle Scholar
  23. 23.
    S. Miyabe and R. W. Harrison.In vivo activation and nuclear binding of the ALT-20 mouse pituitary tumor cell glucocorticoid receptor.Endocrinology 112:2174–2180 (1983).PubMedCrossRefGoogle Scholar
  24. 24.
    J. M. Nickol, K.-L. Lee, and F. T. Kenney. Changes in hepatic levels of tyrosine aminotransferase messenger RNA during induction by hydrocortisone.J. Biol. Chem. 253:4009–4015 (1978).PubMedGoogle Scholar
  25. 25.
    D. Granner, P. Olson, S. Seifert, C. Block, M. Diesterhaft, J. Hargrove, and T. Noguchi. Regulation of tyrosine aminotransferase mRNA in HTC cells.Ann. N. Y. Acad. Sci. 349:183–194 (1980).PubMedCrossRefGoogle Scholar
  26. 26.
    J. Q. Rose and W. J. Jusko. Corticosteroid analysis in biological fluids by high-performance liquid chromatography.J. Chromatogr. 162:273–280 (1979).PubMedCrossRefGoogle Scholar
  27. 27.
    N. Khalafallah and W. J. Jusko. Tissue distribution of prednisolone in the rabbit.J. Pharmacol. Exp. Ther. 229:719–725 (1984).PubMedGoogle Scholar
  28. 28.
    F. D. Boudinot and W. J. Jusko. Fluid shifts and other factors affecting plasma protein binding of prednisolone by equilibrium dialysis.J. Pharm. Sci. 73:774–780 (1984).PubMedCrossRefGoogle Scholar
  29. 29.
    R. L. Priore and H. E. Rosenthal. A statistical method for the estimation of binding parameters in a complex system.Anal. Biochem. 70:231–240 (1976).PubMedCrossRefGoogle Scholar
  30. 30.
    Packard Instrument Co., Instrument Manual 2136, Downers Grove, Illinois (1977).Google Scholar
  31. 31.
    N. Lui, R. R. Almon, and W. J. Jusko. Comparison of filtration and equilibrium dialysis methods for3H-imipramine binding to human platelets.Anal. Biochem. 139:42–57 (1984).PubMedCrossRefGoogle Scholar
  32. 32.
    C. M. Metzler, G. K. Elfring, and A. J. McEwen. A package of computer programs for pharmacokinetic modeling.Biometrics 30:562–563 (1974).CrossRefGoogle Scholar
  33. 33.
    T. I. Diamondstone. Assay of tyrosine transaminase activity by conversion ofp-hyroxyphenylpyruvate top-hydroxybenzaldehyde.Anal. Biochem. 16:395–401 (1966).CrossRefGoogle Scholar
  34. 34.
    O. M. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randal. Protein measurement with the folin phenol reagent.J. Biol. Chem. 193:265–272 (1951).PubMedGoogle Scholar
  35. 35.
    F. D. Boudinot and W. J. Jusko. Dose dependent pharmacokinetics of prednisolone in normal and adrenalectomized rats.J. Pharmacokin. Biopharm. 14:453–467 (1986).CrossRefGoogle Scholar
  36. 36.
    P. G. W. Plageman and J. Erbe. Glucocorticoids-uptake by simple diffusion by cultured Reuber and Novikoff rat hepatoma cells.Biochem. Pharmacol. 25:1489–1494 (1976).CrossRefGoogle Scholar
  37. 37.
    W. M. Pardridge and L. J. Mietus. Transport of protein-bound steroid hormones into liverin vivo.Am. J. Physiol. 237:E367-E372 (1979).PubMedGoogle Scholar
  38. 38.
    S. R. Gross, L. Aronow, and W. B. Pratt. The active transport of cortisol of mouse fibroblasts growingin vitro.J. Cell. Biol. 44:103–114 (1970).PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    M. L. Rao, G. S. Rao, M. Holler, H. Breuer, P. J. Schattenberg, and W. D. Stein. Uptake of cortisol by isolated rat liver cells. A phenomenon indicative of carrier-mediation and simple diffusion.J. Physiol. Chem. 357:573–584 (1976).CrossRefGoogle Scholar
  40. 40.
    J. F. Hackney, S. R. Gross, L. Aronow, and W. B. Pratt. Specific glucocorticoid-binding macromolecules from mouse fibroblasts growingin vitro.Mol. Pharmacol. 6:500–512 (1970).PubMedGoogle Scholar
  41. 41.
    N. Khalafallah and W. J. Jusko. Determination and prediction of tissue binding of prednisolone in the rabbit.J. Pharm. Sci. 73:362–366 (1984).PubMedCrossRefGoogle Scholar
  42. 42.
    M. Mayer, N. Kaiser, R. J. Millholland, and F. Rosen. Cortisol binding in rat skeletal muscle.J. Biol. Chem. 250:1207–1210 (1975).PubMedGoogle Scholar
  43. 43.
    W. R. Slaunwhite, G. M. Lockie, N. Back, and A. A. Sandberg. Inactivityin vivo of transcortin bound cortisol.Science 135:1062–1063 (1962).PubMedCrossRefGoogle Scholar
  44. 44.
    A. Kawai and F. E. Yates. Interference with feedback inhibition of adrenocorticotropin release by protein binding of corticosterone.Endocrinology 79:1040–1046 (1965).CrossRefGoogle Scholar
  45. 45.
    B. Koch, B. Lutz, G. Schmitt, and C. Mailhe. Influence of transcortin on degradation and tissue uptake of corticosterone in the infant rat.Horm. Metab. Res. 2:292–297 (1970).PubMedCrossRefGoogle Scholar
  46. 46.
    M. Lippman and E. B. Thompson. The role of transcription in glucocorticoid mediated enzyme induction: Tyrosine aminotransferase induction in hepatoma tissue culture cells.J. Steroid Biochem. 5:461–465 (1974).PubMedCrossRefGoogle Scholar
  47. 47.
    W. Rosner. Recent studies on the binding of cortisol in serum.J. Steroid Biochem. 3:531–542 (1972).PubMedCrossRefGoogle Scholar
  48. 48.
    G. P. Lewis, W. J. Jusko, C. W. Burke, and L. Graves. Prednisolone side-effects and serum protein levels.Lancet 2:778–781 (1971).PubMedCrossRefGoogle Scholar
  49. 49.
    P. L. Ballard. Delivery and transport of glucocorticoids to target cells.Monogr. Endocrinol. 12:25–48 (1971).CrossRefGoogle Scholar
  50. 50.
    A. Munck and T. Brink-Johnsen. Specific and nonspecific physiochemical interactions of glucocorticoids and related steroids with rat thymus cellsin vitro.J. Biol. Chem. 243:5556–5565 (1968).PubMedGoogle Scholar
  51. 51.
    E. Bloom, D. T. Matulich, N. C. Lan, S. J. Higgins, S. S. Simons, and J. D. Baxter. Nuclear binding of glucocorticoid receptors: Relations between cytosol binding, activation and the biological response.J. Steroid Biochem. 12:175–184 (1980).PubMedCrossRefGoogle Scholar
  52. 52.
    A. Munck and W. J. Holbrook. Glucocorticoid-receptor complexes in rat thymus cells.J. Biol. Chem. 259:820–831 (1984).PubMedGoogle Scholar
  53. 53.
    P. A. Bell and A. Munck. Steroid-binding properties and stabilization of cytoplasmic glucocorticoid receptors from rat thymus cells.Biochem. J. 136:97–107 (1973).PubMedCentralPubMedGoogle Scholar
  54. 54.
    J. A. Goidl, M. H. Cake, K. P. Dolan, L. G. Parchman, and G. Litwack. Activation of the rat liver glucocorticoid-receptor complex.Biochemistry 16:2125–2130 (1977).PubMedCrossRefGoogle Scholar
  55. 55.
    H. M. Westphal and M. Beato. The activated glucocorticoid receptor of rat liver.Eur. J. Biochem. 106:395–403 (1980).PubMedCrossRefGoogle Scholar
  56. 56.
    M. Koblinsky, M. Beato, M. Kalimi, and P. Feigelson. Glucocorticoid binding proteins of rat liver cytosol. II. Physical characterization and properties of the binding proteins.J. Biol. Chem. 247:7897–7904 (1972).PubMedGoogle Scholar
  57. 57.
    A. Munck, C. Wira, D. A. Young, K. M. Mosher, C. Hallahan, and P. A. Bell. Glucocorticoid-receptor complexes and the earliest steps in the action of glucocorticoids on thymus cells.J. Steroid Biochem. 3:567–578 (1972).PubMedCrossRefGoogle Scholar
  58. 58.
    J. L. Middlebrook, M. D. Wong, D. N. Ishii, and L. Aronow. Subcellular distribution of glucocorticoid receptors in mouse fibroblasts.Biochemistry 14:180–186 (1975).PubMedCrossRefGoogle Scholar
  59. 59.
    M. Izawa, Y. Satoh, and S. Ichii. Recycling of steroid hormones. In H. Imura and H. Kuzuya (eds.),Hormone Receptors and Receptor Diseases, Excerpta Medica, Amsterdam, 1983, pp. 127–135.Google Scholar
  60. 60.
    W. R. McIntyre and H. H. Samuels. Triamcinolone acetonide regulates glucocorticoidreceptor levels by decreasing the half-life of the activated nuclear-receptor form.J. Biol. Chem. 260:418–427 (1985).PubMedGoogle Scholar
  61. 61.
    F. D. Boudinot. The role of protein binding in prednisolone pharmacodynamics. Ph.D. thesis, State University of New York at Buffalo (1986).Google Scholar
  62. 62.
    H. G. Morris. Mechanisms of action and therapeutic role of corticosteroids in asthma.J. Allergy Clin. Immunol. 75:1–13 (1985).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • F. Douglas Boudinot
    • 1
  • Robin D'Ambrosio
    • 1
  • William J. Jusko
    • 1
  1. 1.Department of Pharmaceutics, School of PharmacyState University of New York at BuffaloBuffalo

Personalised recommendations