Journal of Pharmacokinetics and Biopharmaceutics

, Volume 14, Issue 5, pp 453–467 | Cite as

Dose-dependent pharmacokinetics of prednisolone in normal and adrenalectomized rats

  • F. Douglas Boudinot
  • William J. Jusko


The pharmacokinetics of prednisolone after 5- and 50-mg/kg doses given as the sodium succinate salt was examined in normal and adrenalectomized rats. Prednisolone, prednisone, and corticosterone concentrations in plasma were determined by HPCL and free prednisolone measured by equilibrium dialysis. Prednisolone sodium succinate was rapidly and completely hydrolyzed to prednisolone as indicated by the absence of the ester from plasma within 5 min after intravenous injection. Prednisolone was rapidly metabolized to prednisone, while corticosterone concentrations in normal rats declined rapidly and were undetectable by 1 hr. Adrenalectomy had no effect on the disposition and protein binding of prednisolone. Dose, however, had a marked effect on prednisolone pharmacokinetics, with mean plasma clearance decreasing from 6.18 to 3.07 L/h per kg and mean steady-state volume of distribution decreasing from 2.14 to 1.05 L/kg from the lower to higher steroid dose. Half-life (0.50 hr) and mean residence time (0.35 hr) were unaffected by dose. Prednisolone plasma protein binding was nonlinear due to saturation of transcortin binding. Changes in pharmacokinetic parameters were not related to the nonlinear plasma binding, but were more likely caused by saturation of elimination pathways and tissue binding sites.

Key words

prednisolone prednisone adrenalectomy pharmacodynamic model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. D. Boudinot. The role of protein binding in prednisolone pharmacodynamics. PhD. thesis, State University of New York at Buffalo (1986).Google Scholar
  2. 2.
    F. D. Boudinot, R. D'Ambrosio, and W. J. Jusko. Receptor-mediated prednisolone pharmacodynamics in the rat.J. Pharmacokin. Biopharm. 14:469–493 (1986).CrossRefGoogle Scholar
  3. 3.
    J. Q. Rose, A. M. Yurchak, and W. J. Jusko. Dose dependent pharmacokinetics of prednisone and prednisolone in man.J. Pharmacokin. Biopharm. 9:389–417 (1981).CrossRefGoogle Scholar
  4. 4.
    M. E. Pickup. Clinical pharmacokinetics of prednisone and prednisolone.Clin. Pharmacokinet. 4:111–128 (1979).PubMedCrossRefGoogle Scholar
  5. 5.
    M. L. Rocci and W. J. Jusko. Dose-dependent protein binding and disposition of prednisolone in rabbits.J. Pharm. Sci. 70:1201–1204 (1981).PubMedCrossRefGoogle Scholar
  6. 6.
    J. D. Unadkat and M. Rowland. Pharmacokinetics of prednisone and prednisolone at steady state in the rabbit.Drug Metab. Dispos. 13:503–509 (1985).PubMedGoogle Scholar
  7. 7.
    F. J. Frey, B. M. Frey, A. Greither, and L. Z. Benet. Prednisolone clearance at steady state in dogs.J. Pharmacol. Exp. Ther. 215:287–291 (1980).PubMedGoogle Scholar
  8. 8.
    A. Vermeulen and E. Caspi. The metabolism of prednisolone by homogenates of rat liver.J. Biol. Chem. 233:54–56 (1958).PubMedGoogle Scholar
  9. 9.
    M. L. Rocci, S. J. Szefler, M. Acara, and W. J. Jusko. Prednisolone metabolism and excretion in the isolated perfused rat kidney.Drug Metab. Dispos. 9:177–182 (1981).PubMedGoogle Scholar
  10. 10.
    Z. Acs, E. Stark, and G. Folly. Steroid-binding properties of corticosteroid receptors in different target tissues of the rat.J. Steroid Biochem. 6:1127–1130 (1975).CrossRefGoogle Scholar
  11. 11.
    H. M. Westphal and M. Beato. The activated glucocorticoid receptor of rat liver.Eur. J. Biochem. 106:395–403 (1980).PubMedCrossRefGoogle Scholar
  12. 12.
    M Izawa, A. Yoshida, and S. Ichii. Dynamics of glucocorticoid receptor and induction of tyrosine aminotransferase in rat liver.Endocrinol. Japon. 29:209–218 (1982).CrossRefGoogle Scholar
  13. 13.
    J. Voight and C. E. Sekeris. Differences in inducibility by glucocorticoids of rat liver TO and TAT.Am. J. Physiol. 235:E374-E380 (1978).Google Scholar
  14. 14.
    F. N. Onyezili and G. A. J. Goodlad. Prednisolone-mediated alterations in ribosomal RNA turnover in rat liver.Biochem. Pharmacol. 31:1160–1163 (1982).PubMedCrossRefGoogle Scholar
  15. 15.
    N. H. G. Holford and L. B. Sheiner. Pharmacokinetic and pharmacodynamic modelingin vivo.CRC Crit. Rev. Bioeng. 5:273–322 (1981).Google Scholar
  16. 16.
    P. F. Bruning, K. M. Jonker, and A. W. Boeremma-Baan. Adsorption of steroid hormones by plastic tubing.J. Steroid Biochem. 14:553–555 (1981).PubMedCrossRefGoogle Scholar
  17. 17.
    J. Q. Rose and W. J. Jusko. Corticosteroid analysis in biological fluids by high-performance liquid chromatography.J. Chromatogr. 162:273–280 (1979).PubMedCrossRefGoogle Scholar
  18. 18.
    F. D. Boudinot and W. J. Jusko. Fluid shifts and other factors affecting plasma protein binding of prednisolone by equilibrium dialysis.J. Pharm. Sci. 73:774–780 (1984).PubMedCrossRefGoogle Scholar
  19. 19.
    R. L. Priore and H. E. Rosenthal. A statistical method for the estimation of binding parameters in a complex system.Anal. Biochem. 70:231–240 (1976).PubMedCrossRefGoogle Scholar
  20. 20.
    F. D. Boudinot and W. J. Jusko, Plasma protein binding interaction of prednisone and prednisolone.J. Steroid Biochem. 21:337–339 (1984).PubMedCrossRefGoogle Scholar
  21. 21.
    T. G. Muldoon and U. Westphal. Steroid-protein interactions XV. Isolation and characterization of corticosteroid binding globulin from human plasma.J. Biol. Chem. 242:5636–5643 (1967).PubMedGoogle Scholar
  22. 22.
    K. C. Yeh and K. C. Kwan. A comparison of numerical integrating algorithms by trapezoidal, Lagrange and spline approximation.J. Pharmacokin. Biopharm. 6:79–98 (1978).CrossRefGoogle Scholar
  23. 23.
    M. L. Rocci and W. J. Jusko. LAGRAN program for area and moments in pharmacokinetic analysis.Comp. Prog. Biomed. 16:203–216 (1983).CrossRefGoogle Scholar
  24. 24.
    C. M. Metzler, G. L. Elfring, and A. J. McEwen. NONLIN, a computer program for nonlinear least-squares regression.Biometrics 30:562–563 (1974).CrossRefGoogle Scholar
  25. 25.
    U. W. Mueller and J. M. Potter. Enterohepatic circulation of prednisolone.Res. Commun. Chem. Pathol. Pharmacol. 32:195–206 (1981).PubMedGoogle Scholar
  26. 26.
    W. J. Kort, I. M. Weijma, and D. L. Westbroek. Reductive effect of phenobarbital on graft survival in prednisolone-treated rats.Eur. Surg. Res. 11:317–324 (1979).CrossRefGoogle Scholar
  27. 27.
    A. Grossman, A. M. Boctor, P. Band, and B. Lane. Role of steroids secretion-modulating effect of triamcinolone and estradiol on protein synthesis and secretion from the rat exocrine pancreas.J. Steroid Biochem. 19:1069–1081 (1983).PubMedCrossRefGoogle Scholar
  28. 28.
    W. F. Ebling, S. J. Szefler, and W. J. Jusko. Methylprednisolone disposition in rabbits. Analysis, prodrug conversion, reversible metabolism, and comparison with man.Drug Metab. Dispos. 13:296–304 (1985).PubMedGoogle Scholar
  29. 29.
    H. Derendorf, H. Mollmann, P. Rohdewald, J. Rehder, and E. W. Schmidt. Kinetics of methylprednisolone and its hemisuccinate ester.Clin. Pharmacol. Ther. 37:502–507 (1985).PubMedCrossRefGoogle Scholar
  30. 30.
    M. L. Rocci and W. J. Jusko. Analysis of prednisone, prednisolone and their 20β-hydroxylated metabolites by high-performance liquid chromatography.Chromatography 224:221–227 (1981).CrossRefGoogle Scholar
  31. 31.
    I. E. Bush, S. A. Hunter, and R. A. Meigs. Metabolism of 11-oxygenated steroids. Metabolismin vitro by preparation of liver.Biochem. J. 107:239–258 (1968).PubMedCentralPubMedGoogle Scholar
  32. 32.
    H. Herken and E. Seeber. Isolierung und Identifizierung von 6β-OH-corticosterone.Naunyn-Schmiedeberg's Arch. 244:442–456 (1963).Google Scholar
  33. 33.
    J. A. Castro, F. E. Greene, P. Gigon, H. Sasame, and J. R. Gillette. Effect of adrenalectomy and cortisone administration on components of the liver microsomal mixed function oxygenase system of male rats which catalyzes ethylmorphine metabolism.Biochem. Pharmacol. 19:2461–2467 (1970).PubMedCrossRefGoogle Scholar
  34. 34.
    R. Kato, K. I. Onoda, and A. Takanaka. Species differences in the effect of morphine administration or adrenalectomy on the substrate interactions with cytochrome P-450 and drug oxidations by liver microsomes.Biochem. Pharmacol. 20:1093–1099 (1971).PubMedCrossRefGoogle Scholar
  35. 35.
    H. Derendorf, H. Mollmann, and P. Rohdewald. Pharmacokinetics of high-dose glucocorticoids. Abstracts, International Congress Pharmaceutical Science (1985).Google Scholar
  36. 36.
    M. L. Rao, G. S. Rao, M. Holler, H. Breuer, P. J. Schattenberg, and W. D. Stein. Uptake of cortisol by isolated rat liver cells. A phenomenon indicative of carrier-mediation and simple diffusion.J. Physiol. Chem. 357:573–584 (1976).CrossRefGoogle Scholar
  37. 37.
    P. G. W. Plagemann and J. Erbe. Glucocorticoids-uptake by simple diffusion by cultured Reuber and Novikoff rat hepatoma cells.Biochem. Pharmacol. 25:1489–1494 (1976).PubMedCrossRefGoogle Scholar
  38. 38.
    W. M. Pardridge and L. J. Mietus. Transport of protein-bound steroid hormones into liverin vivo.Am. J. Physiol. 237:E367-E372 (1972).Google Scholar
  39. 39.
    B. Koch, B. Lutz, G. Schmitt, and C. Mailhe. Influence of transcortin on degradation and tissue uptake of corticosterone in the infant rat.Horm. Metab. Res. 2:292–297 (1970).PubMedCrossRefGoogle Scholar
  40. 40.
    A. A. Sandberg and H. Rosenthal. Transcortin: A corticosteroid binding protein of plasma. V.In vitro inhibition of Cortisol metabolism.J. Clin. Invest. 42:51–54 (1963).PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    N. Khalafallah and W. J. Jusko. Determination and prediction of tissue binding of prednisolone in the rabbit.J. Pharm. Sci. 73:362–366 (1984).PubMedCrossRefGoogle Scholar
  42. 42.
    E. Milgrom and E.-E. Baulieu. Progesterone in uterus and plasma. I. Binding in rat uterus 105,000 G supernatant.Endocrinology 87:276–279 (1970).PubMedCrossRefGoogle Scholar
  43. 43.
    M. Mayer, N. Kaiser, R. J. Millholland, and F. Rosen. Cortisol binding in rat skeletal muscle.J. Biol. Chem. 250:1207–1210 (1975).PubMedGoogle Scholar
  44. 44.
    B. Koch, M. Sakly, and B. Lutz-Bucher. Modulation by transcortin-like binding sites of uptake and distribution of glucocorticoids by dispersed pituitary cells.Mol. Cell Endocrinol. 22:169–178 (1981).PubMedCrossRefGoogle Scholar
  45. 45.
    S. Werthamer, A. J. Samuels, and L. Amaral. Identification and partial purification of “transcortin”-like protein within human lymphocytes.J. Biol. Chem. 248:6398–6407 (1973).PubMedGoogle Scholar
  46. 46.
    U. Westphal. Steroid protein interactions. XIII. Concentrations and binding affinities of corticosteroid-binding globulins in sera of man, monkey, rat, rabbit, and guinea pig.Arch. Biochem. Biophys. 118:556–567 (1967).PubMedCrossRefGoogle Scholar
  47. 47.
    V. Hansson, K. Purvis, A. Attramadal, T. Varaas, and E. M. Ritzen. Quantitation of corticosteroid binding globulin (CBG) by steady state polyacrylamide gel electrophoresis.J. Steroid Biochem. 8:771–775 (1977).PubMedCrossRefGoogle Scholar
  48. 48.
    M. L. Rocci, N. J. Johnson, and W. J. Jusko. Serum protein binding of prednisolone in four species.J. Pharm. Sci. 69:977–978 (1980).PubMedCrossRefGoogle Scholar
  49. 49.
    R. L. Milsap and W. J. Jusko. Binding of prednisolone toα 1-acid glycoprotein.J. Steroid Biochem. 18:191–194 (1983).PubMedCrossRefGoogle Scholar
  50. 50.
    G. J. Chader and U. Westphal. Steroid-protein interactions. XVIII. Isolation and observations on the polymeric nature of the corticosteroid-binding globulin of the rat.Biochemistry 7:4272–4282 (1968).PubMedCrossRefGoogle Scholar
  51. 51.
    M. K. Agarwal. Analysis of rat serum transcortin-steroid hormone association by column chromatography.Arch. Biochem. Biophys. 180:140–145 (1977).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • F. Douglas Boudinot
    • 1
  • William J. Jusko
    • 1
  1. 1.Department of Pharmaceutics, School of PharmacyState University of New York at BuffaloBuffalo

Personalised recommendations