Advertisement

Compartment- and model-independent linear plateau principle of drugs during a constant-rate absorption or intravenous infusion

  • Win L. Chiou
Article

Abstract

A simple general equation is derived to show the linear plateau principle under various conditions during or after a constant or changing rate of absorption or intravenous infusion. The time required to cause a certain fraction (ft) of the total shift or change between the two steady-state plasma concentrations is equal to the time required for the cumulative (from time zero) plasma area, AUC0→t, to reach the same fraction of AUC0→∞ assumed to be obtained after an instantaneousintravenous dosing. The role of the terminal biological half-life and the importance of the earlydistribution phase and its exponential half-life or lives in the plateau principle are discussed.Clinical implications and applications to multiple dosage regimens are also discussed.

Key words

linear pharmacokinetics plateau principle drug accumulation intravenous infusion zero-order absorption plasma area under the curve 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Goldstein, L. Aronow, and S. M. Kaiman.Principles of Drug Actions: The Basis of Pharmacology, Harper & Row, New York, 1969, pp. 292–317.Google Scholar
  2. 2.
    A. Goldstein, L. Aronow, and S. M. Kaiman.Principles of Drug Action: The Basis of Pharmacology, 2nd ed., Wiley, 1974, pp. 311–332.Google Scholar
  3. 3.
    M. Gibaldi and D. Perrier.Pharmacokinetics, Dekker, New York, 1975, p. 71.Google Scholar
  4. 4.
    J. G. Wagner.Fundamentals of Clinical Pharmacokinetics, Drug Intelligence Publications, Hamilton Press, Hamilton, Ill., 1976, p. 91.Google Scholar
  5. 5.
    R. E. Notari.Biopharmaceutics and Pharmacokinetics, An Introduction, 2nd ed., Dekker, New York, 1976.Google Scholar
  6. 6.
    S. Riegelman, J. C. K. Loo, and M. Rowland. Shortcomings in pharmacokinetic analysis by conceiving the body to exhibit properties of a single compartment.J. Pharm. Sci. 57:117–122 (1968).PubMedCrossRefGoogle Scholar
  7. 7.
    J. G. Wagner. Model-independent linear pharmacokinetics.Drug Intell. Clin. Pharm. 10:179–180 (1976).Google Scholar
  8. 8.
    W. L. Chiou. A simple equation to estimate the percent of drug remaining in the body after an intravenous injection.J. Pharm. Pharmacol. 24:343–344 (1972).CrossRefGoogle Scholar
  9. 9.
    J. G. Wagner. Linear pharmacokinetic equations allowing direct calculation of many needed pharmacokinetic parameters from the coefficients and exponents of polyexponential equations which have been fitted to the data.J. Pharmacokin. Biopharm. 4:443–467 (1976).CrossRefGoogle Scholar
  10. 10.
    D. D. Breimer, C. Honhoff, W. Zilly, E. Richter, and J. M.van Rossum. Pharmacokinetics of hexobarbital in man after intravenous infusion.J. Pharmacokin. Biopharm. 3:1–11 (1975).CrossRefGoogle Scholar
  11. 11.
    J. M. van Rossum. Significance of pharmacokinetics for drug design and the planning of dosage regimens, In E. J. Ariens (ed.),Drug Design, Vol. 1, Academic Press, New York, 1971, pp. 469–521.Google Scholar
  12. 12.
    W. L. Chiou. Rapid compartment-and model-independent estimation of times required to attain various fractions of steady-state plasma level during multiple dosing of drugs obeying superposition principle and having various absorption or infusion kinetics.J. Pharm. Sci. 68:1546–1547 (1979).PubMedCrossRefGoogle Scholar
  13. 13.
    W. L. Chiou. New compartment-and model-independent method for the rapid calculation of the absorption rate of drugs. Presented to the APhA Academy of Sciences Meeting, Kansas City, M. November 10–15, 1979.Google Scholar
  14. 14.
    W. L. Chiou. New compartment-and model-independent method for the rapid calculation of the absorption rate of drugs.J. Pharm. Sci. 69:57–62 (1980).PubMedCrossRefGoogle Scholar
  15. 15.
    J. C. K. Loo and S. Riegelman. Assessment of pharmacokinetic constants from post-infusion blood curves obtained after i.v. infusion.J. Pharm. Sci. 59:53–55 (1970).PubMedCrossRefGoogle Scholar
  16. 16.
    C. Graffner, G. Johnson, and J. Sjögren. Pharmacokinetics of procainamide intravenously and orally as conventional and slow-release tablets.Clin. Pharmacol. Ther. 17:414–423 (1975).PubMedGoogle Scholar
  17. 17.
    T. N. Calvey, N. E. Williams, K. T. Muir, and H. E. Barber. Plasma concentration of edrophonium in man.Clin. Pharmacol. Ther. 19:813–820 (1976).PubMedGoogle Scholar
  18. 18.
    S. Niazi and W. L. Chiou. Fluorocarbon aerosol propellants. X. Pharmacokinetics of dichlorotetrafluoroethane in dogs following single and multiple dosing.J. Pharm. Sci. 65:60–64 (1976).PubMedCrossRefGoogle Scholar
  19. 19.
    J. M. van Rossum and A. H. J. M. Tomey, Multicompartment-kinetics and the accumulation plateau.Arch. Int. Pharmacodyn. 188:200–203 (1970).PubMedGoogle Scholar
  20. 20.
    L. Z. Benet. Pharmacokinetics/pharmacodynamics of furosemide in man.J. Pharmacokin. Biopharm. 7:1–27 (1979).CrossRefGoogle Scholar
  21. 21.
    W. L. Chiou, S. M. Huang, and Y. C. Huang. Midpoint backextrapolation method for the rapid estimation of volume of distribution and dosage adjustments of drugs exhibiting multicompartmental characteristics.Int. J. Clin. Pharmacol, Ther. Toxicol. 18:1–4 (1980).Google Scholar
  22. 22.
    M. Gibaldi, G. Levy and H. Weintraub. Drug distribution and pharmacologic effects.Clin. Pharmacol. Ther. 12:734–742 (1971).PubMedGoogle Scholar
  23. 23.
    G. Levy. Pharmacokinetic control and clinical interpretation of steady-state blood levels of drugs.Clin. Pharmacol. Ther. 16:130–134 (1974).Google Scholar
  24. 24.
    W. L. Chiou. Critical evaluation of the potential error in pharmacokinetic studies of using the linear trapezoidal rule method for the calculation of the area under the plasma level-time curve.J. Pharmacokin. Biopharm. 6:539–546 (1978).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • Win L. Chiou
    • 1
  1. 1.Department of Pharmacy, College of PharmacyUniversity of Illinois Medical CenterChicago

Personalised recommendations