Skip to main content
Log in

Diffusion in isotropic and anisotropic porous systems: Three-dimensional calculations

  • Research Note
  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Effective diffusion coefficients were calculated numerically for three-dimensional unit cells representative of different unconsolidated porous media. These numerical results were compared with the experimental results of Kim for packed beds of glass spheres, mica particles, and an artificial porous medium composed of mylar disks. These three-dimensional numerical results confirm that the porosity is the essential parameter for the determination of the effective diffusion coefficient in the case of unconsolidated isotropic systems. In the case of anisotropic systems, better agreement is obtained between numerical predictions and actual data when the unit cell is three-dimensional rather than twodimensional. This emphasizes the fact that three-dimensional unit cells feature more realistic geometrical properties which are needed to accurately describe anisotropic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batchelor, G. K., 1974, Transport properties of two-phase materials with random structure,Ann. Rev. Fluid Mech. 6, 227–255.

    Google Scholar 

  • Bensoussan, A., Lions, J. L., and Papanicolaou, G., 1978,Asymptotic Analysis For Periodic Structures, North-Holland, New York.

    Google Scholar 

  • Beran, M. J., 1968,Statistical Continuum Theories, Interscience, New York.

    Google Scholar 

  • Bourgeat, A., Quintard, M., and Whitaker, S., 1988, Eléments de comparaison entre la méthode d'homogénéisation et la méthode de prise de moyenne avec fermeture,C. R. Acad. Sci. Paris Serie II 306, 463–466.

    Google Scholar 

  • Carbonell, R. G. and Whitaker, S., 1984, Heat and mass transfer in porous media, in J. Bear and M. Y. Corapcioglu, (eds)Fundamentals of Transport Phenomena in Porous Media, Martinus Nijhof, Dordrecht, pp. 121–198.

    Google Scholar 

  • Chang, H.-C., 1982, Multiscale analysis of effective transport in periodic heterogeneous media,Chem. Engng. Comm. 15, 83–91.

    Google Scholar 

  • Currie, J. A., 1960, Gaseous diffusion in porous media, Part I — A non-steady state method,Brit. J. Appl. Phys. II, 314–324.

    Google Scholar 

  • Foster, R. N. and Butt, J. B., 1966, A computational model for the structure of porous materials employed in catalysis,AIChEJ. 12, 189–185.

    Google Scholar 

  • Gobbé, G., Gounot, J., and Quintard M., 1988, Approche spectrale du calcul tridimensionnel de propriétés équivalentes d'un milieu hétérogène.C. R. Acad. Sci. Paris Serie II 307, 1687–1692.

    Google Scholar 

  • Hoogschagen, J., 1955, Diffusion in porous catalysts and adsorbents,Ind. Eng. Chem,47, 906–913.

    Google Scholar 

  • Johnson, M. F. and Stewart, W. E., 1965, Pore structure and gaseous diffusion in solid catalysts,J. Catalysis 4, 248–252.

    Google Scholar 

  • Kim, J.-H., Ochoa, J. A., and Whitaker, S., 1987, Diffusion in anisotropic porous media,Transport in Porous Media 2, 327–356.

    Google Scholar 

  • Plumb, O. A. and Whitaker, S., 1988, Dispersion in heterogeneous porous media 2: Predictions for stratified and two-dimensional spatially periodic systems,Water Resour. Res. 24(7), 927–938.

    Google Scholar 

  • Quintard, M. and Whitaker, S., 1987, Ecoulements monophasiques en milieu poreux: effet des hétérogénéités locales,J. Méca. Théo. Appl. 6, 691–726.

    Google Scholar 

  • Ryan, D., 1984, The theoretical determination of effective diffusivities for reactive, spatially periodic, porous media, MS Thesis, Department of Chemical Engineering, University of California at Davis.

  • Saez, A. E., Perfetti, J. C., and Rusinek, I., 1991, Prediction of effective diffusivities in porous media using spatially periodic models,Transport in Porous Media 6, 143–157.

    Google Scholar 

  • Schwartz, L., 1950,Théorie des distributions, Hermann, Paris.

    Google Scholar 

  • Strieder, W. and Aris, R., 1973,Variational Methods Applied to Problems of Diffusion and Reaction, Springer-Verlag, New York.

    Google Scholar 

  • Wakao, N. and Smith, J. M., 1962, Diffusion in catalyst pellets,Chem. Engng. Sci. 17, 825–834.

    Google Scholar 

  • Webman, I., 1982, Macroscopic properties of disordered media, inLecture Notes in Physics 154, SpringerVerlag, New York, pp. 297–303.

    Google Scholar 

  • Weissberg, H. L., 1963, Effective diffusion coefficients in porous media,J. Appl. Phys. 34, 2636–2639.

    Google Scholar 

  • Whitaker, S., 1986, Flow in porous media I: A theoretical derivation of Darcy's law,Transport in Porous Media 1, 3–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quintard, M. Diffusion in isotropic and anisotropic porous systems: Three-dimensional calculations. Transp Porous Med 11, 187–199 (1993). https://doi.org/10.1007/BF01059634

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01059634

Key words

Navigation