Skip to main content
Log in

Determination of state-of-discharge of zinc-silver oxide button cells. III. In situ impedance measurements of each electrode

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The ac impedance of each electrode of Zn-Ag20 button cells (30–50 mA h) has been measured over an extended range of frequencies using a Hg/HgO reference electrode located in a small hole drilled through the positive case terminal. The high frequency impedance spectrum of the Ag2O cathode is a straight line with a 22.5° slope typical for diffusion at a porous electrode. The low frequency end exhibits a 45° sloped straight line characteristic of diffusion processes at a planar electrode. The deposition process is fast and hence the change transfer resistance is usually not clearly evident in the complex plane impedance plot. The impedance response of the zinc anode shows a capacitive loop at high frequencies and some inductive effects characteristic of adsorption processes. At low frequency the complex plane impedance plot of the total cell is a straight line of slope close to 45° mainly ascribed to the Ag20 cathode. At high frequencies equally important contributions from the two electrodes are evident. The main change in impedance which results from discharge is the decrease of the characteristic relaxation frequency of the high frequency capacitive loop of the zinc anode. The determination of the state-of-discharge at a frequency higher than 1 Hz is best realized if (i) the characteristic relaxation frequency of the high frequency capacitive loop occurring at the zinc anode decreases with discharge and (ii) the response of the Ag2O cathode is quasi-linear over the entire frequency range. Under these conditions the characteristic relaxation frequency at the zinc anode or some related parameters can be clearly seen on the spectrum measured at the two terminals and used as a state-of-discharge indicator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. G. R. Karunathilaka, N. A. Hampson, R. Leek and T. J. Sinclair,J. Appl. Electrochem. 10 (1980) 357.

    Google Scholar 

  2. Idem, ibid. 10 (1980) 603.

    Google Scholar 

  3. Idem, ibid. 10 (1980) 799.

    Google Scholar 

  4. M. L. Gopikanth and S. Sathyanarayana,ibid. 9 (1979) 581.

    Google Scholar 

  5. S. A. G. R. Karunathilaka, N. A. Hampson, R. Leek and T. J. Sinclair,ibid. 11 (1981) 365.

    Google Scholar 

  6. Idem, ibid. 11 (1981) 715.

    Google Scholar 

  7. M. Hughes, S. A. G. R. Karunathilaka, N. A. Hampson and T. J. Sinclair,ibid. 13 (1983) 217.

    Google Scholar 

  8. S. A. G. R. Karunathilaka, N. A. Hampson, T. P. Haas, R. Leek and T. J. Sinclair,ibid. 11 (1981) 573.

    Google Scholar 

  9. S. A. G. R. Karunathilaka, N. A. Hampson, R. Leek and T. J. Sinclair,J. Power Sources 9 (1983) 205.

    Google Scholar 

  10. J. P. Randin,J. Appl. Electrochem. 15 (1985) 365.

    Google Scholar 

  11. F. L. Tye, in ‘Electrochemical Power Sources’ (edited by M. Barak) Peter Peregrinus for the IEE, London (1980) pp. 50–150.

    Google Scholar 

  12. J. -P. Randin,J. Appl. Electrochem. 15 (1985) 293.

    Google Scholar 

  13. D. A. Payne and A. J. Bard,J. Electrochem. Soc. 119 (1972) 1665.

    Google Scholar 

  14. J. O'M. Bockris, Z. Nagy and A. Damjanović,ibid. 119 (1972) 285.

    Google Scholar 

  15. A. R. Despic, D. Jovanovic and T. RakicElectrochim. Acta 21 (1976) 63.

    Google Scholar 

  16. T. P. Dirkse,J. Electrochem. Soc. 126 (1979) 541.

    Google Scholar 

  17. R. D. Armstrong and M. F. Bell,J. Electroanal. Chem. 55 (1974) 201.

    Google Scholar 

  18. C. Cachet, U. Ströder and R. Wiart,Electrochim. Acta 7 (1982) 903 and references therein.

    Google Scholar 

  19. I. Epelboin and M. Keddam,J. Electrochem. Soc. 117 (1970) 1052.

    Google Scholar 

  20. R. D. Armstrong, K. Edmondson and J. A. Lee,J. Electroanal. Chem. 63 (1975) 287.

    Google Scholar 

  21. B. Miller,J. Electrochem. Soc. 117 (1970) 491.

    Google Scholar 

  22. M. Sluyters-Rehbach and J. H. Sluyters, in ‘Electroanalytical Chemistry’, Vol. 4 (edited by A. J. Bard) M. Dekker, Inc., New York (1970) pp. 1–128.

    Google Scholar 

  23. R. D. Armstrong, M. F. Bell and A. A. Metcalfe, in 'Electrochemistry, Specialist Periodical Report, Vol. 6 (edited by H. R. Thirsk) The Chemical Society, Burlington House, London (1978) pp. 98–127.

    Google Scholar 

  24. J. Bressan, G. Feuiulade and R. Wiart,J. Electrochem. Soc. 129 (1982) 2649.

    Google Scholar 

  25. T. D. Dirkse, D. DeWit and R. Shoemaker,ibid. 114 (1967) 1196.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This is the final part of a series of papers dedicated to Professor Einest Yeager on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randin, J.P. Determination of state-of-discharge of zinc-silver oxide button cells. III. In situ impedance measurements of each electrode. J Appl Electrochem 15, 591–601 (1985). https://doi.org/10.1007/BF01059301

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01059301

Keywords

Navigation