Skip to main content
Log in

Mass and momentum transfer enhancement due to electrogenerated gas bubbles

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of electrogenerated gas bubbles with simultaneous bulk liquid flow on the mass and momentum transfer at a wall of an electrolytic cell is experimentally determined. The local mass transfer coefficient and electrolyte shear stress are obtained using two types of microelectrodes imbedded in the channel wall. The influence of the most important parameters (electrolyte velocity, position along the wall, gas electrogeneration rate) on the transfer enhancement is studied and an analogy between mass and momentum transfer in the presence of bubbles is clearly demonstrated from the experimental results. The comparison with classical correlations, valid for systems involving natural turbulence, shows the higher energetic efficiency of devices where the turbulence is artificially generated by electrolytic gas bubbles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

constant parameter in Equation 3

¯C :

time averaged value of the concentration of a reacting species

c 0 :

molar concentration in the bulk of the solution

d :

microelectrode diameter

d e :

hydraulic equivalent diameter

D :

molecular diffusion coefficient

D t :

turbulent diffusivity of mass transfer

f/2:

friction factor, =τ/gr¯v 2

h :

channel thickness

I g :

electrogeneration rate

i g :

electrogeneration current density

i l :

limiting current density on a microelectrode imbedded in the conducting wall

il :

limiting current density on a microelectrode imbedded in the inert wall

k d :

local mass transfer coefficient

k′ :

local mass transfer coefficient on a microelectrode in the non-conducting wall

N M :

specific mass flux near an interface

Re :

Reynolds number, = (¯vd e)/v

s :

velocity gradient, = (∂¯v x/∂y)y = o

s + :

dimensionless velocity gradient, =sd 2/D

Sc :

Schmidt number, =v/D

Sh :

Sherwood number, = (k d x)/D

St :

Stanton number, =k d/¯v

¯v, ¯v x :

electrolyte velocity

v * :

friction velocity, = (τ/ρ)1/2

v + :

normalized velocity, =¯v x /v *

x :

axial coordinate

y :

coordinate perpendicular to the wall

y + :

dimensionless length = (yv *)/v

α:

parameter defined in Equation 8

δ:

boundary layer thickness

δ+ :

dimensionless form of δ, = δ(s/v)1/2

τ, τx :

electrolyte shear stress

μ :

dynamic viscosity

ν :

kinematic viscosity

ν t :

momentum transfer diffusivity

ρ :

specific gravity

σ2 :

variance of the fluctuations ofi L ori′ L

References

  1. Gh. Barthole, A. Storck, A. Laurent and J. C. Charpentier,Int. Eng. Chem., Process Des. Dev. 19 (1980) 514.

    Google Scholar 

  2. Idem, Entropie 93 (1980) 30.

    Google Scholar 

  3. Idem, Int. Chem. Eng. 22 (1982) 244.

    Google Scholar 

  4. N. Ibl and J. Venczel,Metalloberfläche 24 (1970) 365.

    Google Scholar 

  5. I. Rousar and V. Cezner,Electrochim. Acta 20 (1975) 289.

    Google Scholar 

  6. K. Stephan and H. Vogt,ibid. 24 (1979) 11.

    Google Scholar 

  7. L. J. J. Janssen and J. G. Hoogland,ibid. 18 (1973) 543.

    Google Scholar 

  8. L. J. J. Janssen,ibid. 23 (1978) 81.

    Google Scholar 

  9. Idem, ibid. 24 (1979) 693.

    Google Scholar 

  10. A. Storck, Thesis, Nancy (1976).

  11. A. Storck and F. Coeuret,Electrochim. Acta,22 (1977) 1155.

    Google Scholar 

  12. A. Storck and D. Hutin,ibid. 26 (1981) 127.

    Google Scholar 

  13. M. G. Fouad and G. H. Sedahmed,ibid. 17 (1972) 665.

    Google Scholar 

  14. C. I. Elsner and S. L. Marchiano,J. Appl. Electrochem. 12 (1982) 735.

    Google Scholar 

  15. G. Cognet, M. Lebouche and M. Souhar,AIChE J. 30 (1984) 338.

    Google Scholar 

  16. L. Rosenhead, ‘Laminar Boundary Layers’, Oxford University Press, Oxford (1963).

    Google Scholar 

  17. D. J. Pickett, ‘Electrochemical Reactor Design’, Elsevier, New York (1977) Chap. 4, pp. 125–134.

    Google Scholar 

  18. N. Ibl, in ‘Comprehensive Treatise of Electrochemistry’, Vol. 6, Plenum Press, New York (1983) Chap. 3.

    Google Scholar 

  19. F. Coeuret and A. Storck, ‘Eléments de Génie Electrochimique’, Technique et Documentation, Lavoisier, Paris (1984).

    Google Scholar 

  20. D. T. Wasan and C. R. Wilke,Int. J. Heat Mass Transfer 7 (1964)87.

    Google Scholar 

  21. E. R. G. Eckeit and J. F. Gross, ‘Introduction to Heat and Mass Transfer’ McGraw Hill, New York (1963).

    Google Scholar 

  22. C. S. Lin, E. B. Denton, H. L. Gaskill and G. L. Putnam,Ind. Eng. Chem. 43 (1951) 2136.

    Google Scholar 

  23. O. C. Sandall, O. T. Hanna and P. R. Mazet,Can. J. Chem. Eng. 58 (1980) 443.

    Google Scholar 

  24. R. G. Deissler, NACA Report 1210 (1955).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giron, F., Valentin, G., Lebouche, M. et al. Mass and momentum transfer enhancement due to electrogenerated gas bubbles. J Appl Electrochem 15, 557–566 (1985). https://doi.org/10.1007/BF01059297

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01059297

Keywords

Navigation