Skip to main content
Log in

Modelling of gas evolving electrolysis cells. I. The gas voidage problem

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A critical review of experimental gas voidage data for gas—liquid mixtures available in the literature yields the result that these data cannot be explained by known theories of the gas hold-up. Based on the empirical experience that bubble coalescence is hindered in electrolyte solutions, new equations are derived for the calculation of the gas voidage as a function of the superficial gas velocity by introducing a coalescence barrier model. Experimental investigations confirm the theoretical prediction of the existence of a limiting gas voidage which is a characteristic quantity of each gas—electrolyte combination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

area (cm2)

α m :

minimum bubble distance (cm)

E :

energy (J)

F :

Faraday constant (A s mol−1)

G :

volumetric gas flow rate (cm3 s−1)

h :

height (cm)

L :

volumetric liquid flow rate (cm3 s−1)

p :

pressure (Pa)

R :

gas constant (J mol−1K−1)

T :

temperature (K)

u :

rise velocity (cm s−1)

u 0 :

superficial flow velocity (cm s−1)

γ :

surface tension (J cm−2)

ε :

voidage (1)

ge m :

limiting voidage (1)

X :

conductivity (S cm−1)

ν e :

number of electrons (1)

b:

bubble

g:

gas phase

l:

liquid phase

s:

single bubble

sw:

bubble swarm

References

  1. Lord Rayleigh,Philos. Mag. 34 (1892) 481.

    Google Scholar 

  2. J. C. Maxwell, ‘A Treatise on Electricity and Magnetism’, 2nd ed., Vol. 1, Clarendon Press, Oxford (1881) p. 435.

    Google Scholar 

  3. G. H. Neale and W. K. Nader,AIChE J. 19 (1973) 112.

    Google Scholar 

  4. R. E. De la Rue and C. W. Tobias,J. Electrochem. Soc. 106 (1959) 827.

    Google Scholar 

  5. R. E. Meredith and C. W. Tobias,ibid. 108 (1961) 286.

    Google Scholar 

  6. D. A. G. Bruggemann,Ann. Phys. 24 (1935) 636.

    Google Scholar 

  7. S. Prager,Physica 29 (1963) 129.

    Google Scholar 

  8. H. Vogt, ‘Gas-evolving Electrodes’, in ‘Comprehensive Treatise of Electrochemistry’, Vol. 6, Plenum Press, New York (1983) p. 471.

    Google Scholar 

  9. P. J. Sides,AIChE Symposium Series No. 229, 79 (1984) 226.

  10. B. E. Bongenaar-Schlenter, L. J. J. Janssen, S. J. D. van Stralen and E. Barendrecht,J. Appl. Electrochem. 15 (1985) 537.

    Google Scholar 

  11. F. Hine and K. Murakami,J. Electrochem. Soc. 127 (1980) 292.

    Google Scholar 

  12. P. J. Sides and C. W. Tobias,ibid. 129 (1982) 2715.

    Google Scholar 

  13. L. J. J. Janssen and E. Barendrecht,Electrochim. Acta 28 (1983) 341.

    Google Scholar 

  14. L. J. J. Janssen, J. J. M. Geraets, E. Barendrecht and S. D. J. van Stralen,ibid. 27 (1982) 1207.

    Google Scholar 

  15. O. Lanzi and R. F. Savinell,J. Electrochem. Soc. 130 (1983) 799.

    Google Scholar 

  16. L. Sigrist, Dissertation ETH Nr. 6286. Zürich (1978).

  17. C. W. Tobias,J. Electrochem. Soc. 106 (1959) 833.

    Google Scholar 

  18. J. E. Funk and J. F. Thorpe,ibid. 116 (1969) 48.

    Google Scholar 

  19. S. Nagy,J. Appl. Electrochem. 6 (1976) 171.

    Google Scholar 

  20. I. Rousar,J. Electrochem. Soc. 116 (1969) 676.

    Google Scholar 

  21. I. Rousar, V. Cezner, J. Nejepsová, M. M. Jaksić, M. Spasojević and B. Z. Nikolić,J. Appl. Electrochem. 7 (1977) 427.

    Google Scholar 

  22. H. Vogt,Electrochim. Acta 26 (1981) 1311.

    Google Scholar 

  23. D. J. Nicklin, J. D. Wilkes and J. F. Davidson,Trans. Instn. Chem. Eng. 40 (1962) 61.

    Google Scholar 

  24. D. J. Nicklin,Chem. Eng. Sci. 17 (1962) 693.

    Google Scholar 

  25. A. A. Kaskas, Dissertation, TU Berlin (1971).

  26. G. Marucci,Ind. Eng. Chem. Fundam. 4 (1965) 224.

    Google Scholar 

  27. J. F. Richardson and W. N. Zaki,Trans. Instn. Chem. Eng. 32 (1954) 35.

    Google Scholar 

  28. H. Brauer and H. Thiele,Chem. Ing. Tech. 45 (1973) 909.

    Google Scholar 

  29. H. Brauer, Grundlagen der Emphasen-und Mehrphasenströmungen, Verlag Sauerländer, Frankfurt/M. (1971) p. 295f.

    Google Scholar 

  30. L. Sigrist, O. Dossenbach and N. Ib1,J. Appl. Electrochem. 10 (1980) 223.

    Google Scholar 

  31. W. Siemes,Chem. Ing. Tech. 26 (1954) 614.

    Google Scholar 

  32. N. P. Brandon, G. H. Kelsall, S. Levine and A. L. Smith,J. Appl. Electrochem. 15 (1985) 485.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreysa, G., Kuhn, M. Modelling of gas evolving electrolysis cells. I. The gas voidage problem. J Appl Electrochem 15, 517–526 (1985). https://doi.org/10.1007/BF01059293

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01059293

Keywords

Navigation