Journal of Pharmacokinetics and Biopharmaceutics

, Volume 21, Issue 5, pp 551–574 | Cite as

A physiological and system analysis hybrid pharmacokinetic model to characterize carbon tetrachloride blood concentrations following administration in different oral vehicles

  • James M. Gallo
  • L. L. Cheung
  • Hyo J. Kim
  • James V. Bruckner
  • William R. Gillespie


Oral absorption of chemicals can be influenced significantly by the administration vehicle or diluent. It has been observed that the oral absorption of carbon tetrachloride (CCl4)and other volatile organic chemicals is markedly affected by the dosing vehicle, with administration in oils producing erratic blood concentration-time profiles with multiple peaks. Analysis of this type of data by a compartmental modeling approach can be difficult, and requires numerous assumptions about the absorption processes. Alternatively, a system analysis method with few assumptions may provide a more accurate description of the observed data. In the current investigations, a nonlinear system analysis approach was applied to blood CCl4concentration-time data obtained following iv and oral administration. The oral regimens consisted of 25 mg CCl4/kgbody wt given as an aqueous emulsion, in water, as pure chemicals, and in corn oil. The system analysis procedure, based upon a disposition decomposition method, provided an absorption input rate function, F,for each regimen. A physiological pharmacokinetic model, based primarily on parameters available in the literature, and the Finput functions, formed a hybrid model that adequately described the observed blood CCl4concentration-time data. The same physiological pharmacokinetic model, employing conventional first-order absorption input schemes, did not predict the data as well. Overall, the system analysis approach allowed the oral absorption of CCl4to be characterized accurately, regardless of the vehicle. Though system analysis is based on general mathematical properties of a system's behavior rather than on its causal mechanisms, this work demonstrates that it can be a useful adjunct to physiological pharmacokinetic models.

Key words

physiological pharmacokinetic model system analysis disposition decomposition method rat volatile organic hydrocarbons 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. W. Condie, R. D. Laune, T. Mills, M. Robinson, and J. P. Bercz. Effect of gavage vehicle on hepatotoxicity of carbon tetrachloride in CD-mice: Corn oil versus Tween-60 aqueous emulsion.Fund. Appl. Toxicol. 7:199–206 (1986).CrossRefGoogle Scholar
  2. 2.
    R. J. Bull, J. M. Brown, E. A. Meirhenry, T. A. Jorgenson, M. Robinson, and J. A. Stober. Enhancement of the hepatotoxicity of chloroform in B6C3F1 mice by corn oil: Implications for chloroform carcinogenesis.Environ. Health Perspect. 69:49–58 (1986).PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    H. J. Kim, S. Odend'hal, and J. V. Bruckner. Effect of oral dosing vehicles on the acute hepatotoxicity of carbon tetrachloride in rats.Toxicol. Appl. Pharmacol. 102:34–49 (1990).PubMedCrossRefGoogle Scholar
  4. 4.
    B. A. Merrick, M. Robinson, and L. W. Condie. Differing hepatotoxicity and lethality after subacute trichloroethylene exposures in aqueous or corn oil gavage vehicles in B6C3F1 mice.J. Appl. Toxicol. 9:15–21 (1989).PubMedCrossRefGoogle Scholar
  5. 5.
    Nutrition Foundation. Report of the ad hoc working group on oil/gavage in toxicity. Nutrition Foundation (ISBN 0-934368-34-5), Washington, DC, 1983.Google Scholar
  6. 6.
    D. F. Birt. Fat and caloric effects on carcinogenesis at sites other than the mammary gland.Am. J. Clin. Nutrition. 45:203–209 (1987).Google Scholar
  7. 7.
    C. W. Welsch. Enhancement of mammary tumorigenesis by dietary fat: Review of potential mechanisms.Am. J. Clin. Nutrition 45:192–202 (1987).Google Scholar
  8. 8.
    J. R. Withey. Pharmacodynamics and uptake of vinyl chloride monomer administered by various routes to rats.J. Toxicol. Environ. Health 1:381–394 (1976).PubMedCrossRefGoogle Scholar
  9. 9.
    J. R. Withey, B. T. Collins, and P. G. Collins. Effects of vehicle on the pharmacokinetics and uptake of four halogenated hydrocarbons from the gastrointestinal tract of the ratJ. Appl. Toxicol. 3:249–253 (1983).PubMedCrossRefGoogle Scholar
  10. 10.
    R. Gingell, P. W. Beatty, H. R. Mitschke, A. C. Page, V. L. Sawin, L. Putcha, and W. G. Kramer. Toxicokinetics of 1,2-dibromo-3-chloropropane (DBCP) in the rat.Toxicol. Appl. Pharmacol. 91:386–394 (1987).PubMedCrossRefGoogle Scholar
  11. 11.
    H. J. Kim, J. V. Bruckner, C. E. Dallas, and J. M. Gallo. Effect of dosing vehicles on the pharmacokinetics of orally administered carbon tetrachloride in rats.Toxicol. Appl. Pharmacol. 102:50–60 (1990).PubMedCrossRefGoogle Scholar
  12. 12.
    J. C. Ramsey and M. E. Andersen. A physiologically based description of the inhalation pharmacokinetics of styréne monomer in rats and humans.Toxicol Appl. Pharmacol. 73:159–175 (1984).PubMedCrossRefGoogle Scholar
  13. 13.
    D. J. Cutler. Linear systems analysis in pharmacokinetics.J. Pharmacokin. Biopharm. 6:265–282 (1978).CrossRefGoogle Scholar
  14. 14.
    P. Veng-Pedersen. Linear and nonlinear system approaches in pharmacokinetics: How much do they have to offer? I. General considerations.J. Pharmacokin. Biopharm. 16:413–472 (1988).CrossRefGoogle Scholar
  15. 15.
    P. Veng-Pedersen. Theorems and implications of a model-independent elimination/ distribution function decomposition of linear and some nonlinear drug dispositions. I. Derivations and theoretical analysis.J. Pharmacokin. Biopharm. 12:627–248 (1984).CrossRefGoogle Scholar
  16. 16.
    W. R. Gillespie and P. Veng-Pedersen. Theorems and implications of a model-indepen-dent elimination/distribution function decomposition of linear and some non-linear drug dispositions. II. Clearance concepts applied to the evaluation of distribution kinetics.J. Pharmacokin. Biopharm. 13:441–451 (1985).CrossRefGoogle Scholar
  17. 17.
    R. H. Reitz, J. N. McDougal, M. W. Himmelstein, R. J. Nolan, and A. M. Schumann. Physiologically based pharmacokinetic modeling with methylchloroform: Implications for interspecies, high dose/low dose, and dose route extrapolations.Toxicol. Appl. Pharmacol. 95:185–199 (1988).PubMedCrossRefGoogle Scholar
  18. 18.
    J. W. Fisher, T. A. Whittaker, D. H. Taylor, H. J. Clewell, III, and M. E. Andersen. Physiologically based pharmacokinetic modeling of the pregnant rat: A multiroute exposure model for trichloroethylene and its metabolite, trichloroacetic acid.Toxicol. Appl. Pharmacol. 99:395–414 (1989).PubMedCrossRefGoogle Scholar
  19. 19.
    W. R. Gillespie, L. L. Cheung, H. J. Kim, J. V. Bruckner, and J. M. Gallo. Application of systems analysis to toxicology: Characterization of carbon tetrachloride oral absorption kinetics. In T. R. Gerrity and C. J. Henry (eds.),Principles of Route-to-Route Extrapolation for Risk Assessment, Elsevier, New York, 1990, pp. 285–295.Google Scholar
  20. 20.
    M. E. Andersen, M. L. Gargas, R. A. Jones, and L. J. Jenkins, Jr. Determinations of the kinetic constants for the metabolism of inhaled toxicantsin vivo using gas uptake measurements.Toxicol. Appl. Pharmacol. 54:100–116 (1980).PubMedCrossRefGoogle Scholar
  21. 21.
    P. Veng-Pedersen. Curve fitting and modeling in pharmacokinetics and some practical experiences with NONLIN and a new program FUNFIT.J. Pharm. Sci. 66:513–531 (1977).Google Scholar
  22. 22.
    P. Linz.Analytical and Numerical Methods for VoJterra Equations, SIAM, Philadelphia, 1985.CrossRefGoogle Scholar
  23. 23.
    K. Yamaoka, T. Nakagawa, and T. Uno. Application of Akaike's information criterion (AIC) in the evaluation of linear pharmacokinetic equations.J. Pharmacokin. Biopharm. 6:165–175 (1978).CrossRefGoogle Scholar
  24. 24.
    Internation Mathematics and Statistics Library.BSVLS, IMSL, Houston, TX, 1982.Google Scholar
  25. 25.
    C. E. Dallas, R. Ramanathan, S. Muralidhara, J. M. Gallo, and J. V. Bruckner. The uptake and elimination of 1,1,1-trichloroethane during and following inhalation exposures in rats.Toxicol Appl. Pharmacol. 98:385–397 (1989).PubMedCrossRefGoogle Scholar
  26. 26.
    M. J. Angelo and A. B. Pritchard. Simulations of methylene chloride pharmacokinetics using a physiologically based model.Regul. Toxicol. Pharmacol. 4:329–339 (1984).PubMedCrossRefGoogle Scholar
  27. 27.
    U.S. Environmental Protection Agency.Reference Physiological Parameters in Pharmakinetic Modeling, EPA/600/6-88/004, Office of Health and Environmental Assessment, Washington, DC, 1988.Google Scholar
  28. 28.
    M. L. Gargas, R. J. Burgess, D. E. Voisard, G. H. Cason, and M. E. Andersen. Partition coefficients of low-molecular-weight volatile chemicals in various liquids and tissues.Toxicol. Appl. Pharmacol. 98:87–99 (1989).PubMedCrossRefGoogle Scholar
  29. 29.
    D. J. Paustenbach, H. J. Clewell, III, M. L. Gargas, and M. E. Andersen. A physiologically based pharmacokinetic model for inhaled carbon tetrachloride.Toxicol. Appl. Pharmacol. 96:191–211 (1988).PubMedCrossRefGoogle Scholar
  30. 30.
    SIMUSOLV. Dow Chemical Co., Midland, MI, 1986.Google Scholar
  31. 31.
    P. Veng-Pedersen. Pulmonary absorption and excretion of compounds in the gas phase.J. Pharm. Sci. 73:1136–1141 (1984).PubMedCrossRefGoogle Scholar
  32. 32.
    P. Veng-Pedersen, D. J. Paustenbach, L. Suarez, and G. P. Carlson. A linear systems approach to analyzing the pharmacokinetics of carbon tetrachloride in the rat following repeated exposures of 8–11.5 hr/day.Arch. Toxicol. 60:355–364 (1987).PubMedCrossRefGoogle Scholar
  33. 33.
    N. Uemitsu. Inhalation pharmacokinetics of carbon tetrachloride in rats based on arterial blood:inhaled air concentrations ratios.Toxicol. Appl. Pharmacol. 83:20–29 (1986).PubMedCrossRefGoogle Scholar
  34. 34.
    D. A. Staats, J. W. Fisher, and R. B. Connolly. Gastrointestinal absorption for xenobiotics in physiologically based pharmacokinetic models.Drug Metab. Dispos. 19:144–148 (1991).PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • James M. Gallo
    • 1
  • L. L. Cheung
    • 3
  • Hyo J. Kim
    • 2
  • James V. Bruckner
    • 2
  • William R. Gillespie
    • 3
  1. 1.Department of Pharmaceutics, College of PharmacyUniversity of GeorgiaAthens
  2. 2.Department of Pharmacology and Toxicology, College of PharmacyUniversity of GeorgiaAthens
  3. 3.Division of Pharmaceutics, College of PharmacyUniversity of TexasAustin

Personalised recommendations