Advertisement

Journal of Pharmacokinetics and Biopharmaceutics

, Volume 21, Issue 5, pp 515–532 | Cite as

Simultaneous pharmacodynamic modeling of the non-steady-state effects of three oral doses of 1,3-glyceryl dinitrate upon blood pressure in healthy volunteers

  • Mark Gumbleton
  • Leslie Z. Benet
Article

Abstract

The organic nitrate 1,3-glyceryl dinitrate (1,3-GDN) is one of the primary dinitrate metabolites of the antianginal agent nitroglycerin (GTN). Investigational New Drug Approval was sought to administer oral solution doses of 1,3-GDN to a small number (n=3) of healthy volunteers; each subject receiving three doses at 1.2, 2.4, and 3.6 mg. With volunteers confined to a semirecumbent posture for the duration of each treatment (4-hr period postdose), diastolic blood pressure (DBP) was recorded and plasma samples collected for 1,3-GDN concentration analysis. Appreciable concentration-related decreases in DBPwere observed, with maximal decreases from predose baseline values approximating 11 to 25 mm Hg. For each subject parametric pharmacodynamic modeling was performed with simultaneous analysis utilizing the DBPvs. time data from all three doses; an inhibitory Emaxpharmacodynamic model was adopted. The temporal relationship between plasma 1,3-GDN concentrations and DBPdisplayed rapid equilibration. For subjects 1, 2 and 3,respectively, Emaxwas predicted as 12.9, 23.4, and 29.7 mm Hg, representing 21.5, 31.6, and 39.5% decreases in DBPfrom predose baseline values;plasma concentrations at half Emax (C50)were 2.75, 2.43, and 5.93 μg/L. Utilizing pharmacokinetic-pharmacodynamic modeling, 1,3-GDN plasma concentrations appear to relate to a systemic “effect measure” that is mechanistically representative of the therapeutic actions of organic nitrates as peripheral vasodilators. The establishment of a GDN plasma concentration-effect relationship together with the relatively high plasma levels of GDN achieved following GTN dosing supports the hypothesis that the GDNs contribute significantly to the hemodynamic effect observed with GTN.

Key words

glyceryl dinitrate nitroglycerin human blood pressure pharmacodynamics pharmacokinetic-pharmacodynamic modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. S. Kohli, N. S. Khurmi, M. M. Kardash, L. L. Hughes, A. Lahiri, and E. B. Raftery. Lack of correlation of blood nitrate levels with dose and exercise time in angina pectoris. InAbstracts of the Cardiovascular Pharmacotherapy International Symposium, Geneva, 1985. (Abstract 567).Google Scholar
  2. 2.
    M. E. Davidov. Cutaneous administration of nitroglycerin in patients with angina pectoris.Angiology 32:16–20 (1981).PubMedCrossRefGoogle Scholar
  3. 3.
    D. L. Karsh, R. E. Umbach, L. S. Cohen, and R. A. Langou. Prolonged benefit of nitroglycerin ointment on exercise tolerance in patients with angina pectoris.Am. Heart J. 96:587–595 (1978).PubMedCrossRefGoogle Scholar
  4. 4.
    M. E. Davidov and W. J. Mroczek. Effect of sustained release nitroglycerin capsules on anginal frequency and exercise capacity: A double-blind evaluation.Angiology 28:181–189 (1977).PubMedCrossRefGoogle Scholar
  5. 5.
    M. E. Davidov and W. J. Mroczek. The effect of nitroglycerin ointment on the exercise capacity in patients with angina pectoris.Angiology 27:205–211 (1976).PubMedCrossRefGoogle Scholar
  6. 6.
    T. Winsor and H. J. Berger. Oral nitroglycerin as a prophylactic anti-anginal drug: Clinical, physiologic and statistical evidence of efficacy based upon a three-phase experimental design.Am. Heart J. 90:611–626 (1975).PubMedCrossRefGoogle Scholar
  7. 7.
    L. J. Ignarro, H. Lippton, J. C. Edwards, W. H. Barcios, A. L. Hyman, P. J. Kadowitz, and C. A. Gruetter. Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: Evidence for the involvement of S-nitrosothiols as active intermediates.J. Pharmacol. Exp. Ther. 218:739–749 (1981).PubMedGoogle Scholar
  8. 8.
    P. Needleman, D. J. Blehm, and K. S. Rotskoff. Relationship between glutathione-dependent denitration and the vasodilator effectiveness of organic nitrates.J. Pharmacol. Exp. Ther. 165:286–288 (1969).PubMedGoogle Scholar
  9. 9.
    M. G. Bogaert, M. T. Rosseel, and A. F. DeSchaepdryver. Cardiovascular effects of glyceryl dinitrates as compared to glyceryl trinitrate.Arch. Int. Pharmacodyn. 176:458–460 (1968).PubMedGoogle Scholar
  10. 10.
    M. Gumbleton and L. Z. Benet. Pharmacological activity of the dinitrate metabolites of nitroglycerin following their oral administration to healthy volunteers.Br. J. Clin. Pharmacol. 31:211–213 (1991).PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    M. Gumbleton, J. R. Cashman, and L. Z. Benet. 1,2-and 1,3-dinitrate metabolites of nitroglycerin: Spectroscopic characterization and initial administration to man.Int. J. Pharm. 71:175–186 (1991).CrossRefGoogle Scholar
  12. 12.
    P. K. Noonan, R. L. Williams, and L. Z. Benet. Dose-dependent pharmacokinetics of nitroglycerin after multiple intravenous infusions in healthy volunteers.J. Pharmacokin. Biopharm. 13:143–157 (1985).CrossRefGoogle Scholar
  13. 13.
    F. W. Lee, T. Salmonson, C. H. Metzler, and L. Z. Benet. Pharmacokinetics and pharmacodynamics of glyceryl trinitrate and its two dinitrate metabolites in conscious dogs.J. Pharmacol. Exp. Ther. 255:1222–1229 (1990).PubMedGoogle Scholar
  14. 14.
    W. E. Haefeli, M. Gumbleton, L. Z. Benet, B. B. Hoffman, and T. F. Blaschke. Comparison of vasodilatory responses to nitroglycerin and its dinitrate metabolites in human veins.Clin. Pharmacol. Ther. 52:453–455 (1992).CrossRefGoogle Scholar
  15. 15.
    E. Nakashima, J. Rigod, E. T. Lin, and L. Z. Benet. Pharmacokinetics of nitroglycerin and its dinitrate metabolites over a 30-fold range of oral doses.Clin. Pharmacol. Ther. 47:592–598 (1990).PubMedCrossRefGoogle Scholar
  16. 16.
    F. W. Lee, N. Watari, J. Rigod, and L. Z. Benet. Simultaneous determination of nitroglycerin and its dinitrate metabolites by capillary gas chromatography with electron-capture detection.J. Chromatog. 426:259–266 (1988).CrossRefGoogle Scholar
  17. 17.
    D. K. Yu, R. L. Williams, L. Z. Benet, E. T. Lin, and D. H. Giesing. Pharmacokinetics of nitroglycerin and metabolites in humans following oral dosing.Biopharm. Drug Dispos. 9:557–565 (1988).PubMedCrossRefGoogle Scholar
  18. 18.
    L. B. Sheiner, D. R. Stanski, S. Vozeh, R. D. Miller, and J. Ham. Simultaneous modelling of pharmacokinetics and pharmacodynamics: Application to d-tubocurarine.Clin. Pharmacol. Ther. 25:358–371 (1979).PubMedGoogle Scholar
  19. 19.
    N. H. G. Holford and L. B. Sheiner. Pharmacokinetic and pharmacodynamic modelling in-vivo.CRC Crit. Rev. Bioeng. 5:273–322 (1981).Google Scholar
  20. 20.
    H. L. Fung, S. Chong, and E. Kowaluk. Mechanisms of nitrate action and vascular tolerance.Eur. Heart J. 10(Suppl. A): 2–6 (1989).PubMedCrossRefGoogle Scholar
  21. 21.
    P. A. Cossum, M. S. Roberts, A. C. Yong, and D. Kilpatrick. Distribution and metabolism of nitroglycerin and its metabolites in vascular beds of sheep.J. Pharmacol. Exp. Ther. 237:959–966 (1986).PubMedGoogle Scholar
  22. 22.
    J. Ahlner, R. G. G. Andersson, K. Torfgard, and K. L. Axelsson. Organic nitrate esters: Clinical use and mechanisms of action.Pharmacol. Rev. 43:351–423 (1991).PubMedGoogle Scholar
  23. 23.
    T. Kikkoji, M. Gumbleton, N. Higo, R. H. Guy, and L. Z. Benet. Percutaneous penetration kinetics of nitroglycerin and its dinitrate metabolites across hairless mouse skinin vitro.Pharm. Res. 8:1231–1237 (1991).PubMedCrossRefGoogle Scholar
  24. 24.
    L. J. Ignarro. Signal transduction mechanisms involving nitric oxide.Biochem. Pharmacol. 41:485–490 (1991).PubMedCrossRefGoogle Scholar
  25. 25.
    M. Leitold, H. Laufen, and R. A. Yeates. Vergleichende Pharmakologie von glycerol-l-nitrat und glyceroltrinitrat an verschiedenen tierartzen.Arzneim. Forsch. 36:814–821 (1986).Google Scholar
  26. 26.
    M. Leitold, H. Laufen, and R. A. Yeates. Hypotensive antianginose Wirkung und pharmakokinetik von glyceryl-1-nitrat an der ratte und am hund.Arzneim. Forsch. 36:1577–1582 (1986).Google Scholar
  27. 27.
    H. Laufen and M. Leitold. Glyceryl-1-nitrate pharmacokinetics in healthy volunteers.Br. J. Clin. Pharmacol. 23:287–293 (1987).PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    C. Han, M. Gumbleton, D. T. W. Lau, and L. Z. Benet. Improved gas Chromatographic assay for the simultaneous determination of nitroglycerin and its mono-and di-nitrate metabolites.J. Chromatog. 579:237–245 (1992).CrossRefGoogle Scholar
  29. 29.
    G. Sponer, H. F. Kuhnle, K. Strein, W. Bartsch, R. Endele, and K. Dietmann, Pharmacokinetic aspects of isosorbide-5-mononitrate in dogs.J. Pharmacol. Exp. Ther. 228:235–239 (1984).PubMedGoogle Scholar
  30. 30.
    N. Reifart, W. D. Bussmann, M. Schirmer, and M. Kaltenbach. Hamodynamische Wirksamkeit, Wirkdauer und Pharmakokinetik von 80 mg Isosorbid-5-mononitrat beim frischen.Herzinfarkt. Med. Welt. 32:540–542 (1981).Google Scholar
  31. 31.
    W. Schaumann. Pharmacokinetics of isosorbide dinitrate and isosorbide-5-mononitrate.Int. J. Clin. Pharmacol. Ther. Toxicol. 27:445–453 (1989).PubMedGoogle Scholar
  32. 32.
    R. L. Williams, K. M. Thakker, V. John, E. T. Lin, W. L. Gee, and L. Z. Benet. Nitroglycerin absorption from transdermal systems: Formulation effects and metabolite concentrations.Pharm. Res. 8:744–749 (1991).PubMedCrossRefGoogle Scholar
  33. 33.
    P. K. Noonan and L. Z. Benet. The bioavailability of oral nitroglycerin.J. Pharm. Sci. 75:241–243 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Mark Gumbleton
    • 1
  • Leslie Z. Benet
    • 1
  1. 1.Department of Pharmacy, School of PharmacyUniversity of CaliforniaSan Francisco

Personalised recommendations