An inequality-constrained least-squares deconvolution method

  • Davide Verotta


The output-function (Y) of a linear system is the convolution of the input function (I) to the system with the disposition-function (H) of the system. Given Y and H deconvolution yields I. A non-parametric method for numerical deconvolution is described. The method is based on an inequality-constrained least-squares criterion and approximates I by a discontinuous function. No assumptions are made about the form of H or Y. Numerical stability and physical realism are obtained by constraining the estimated I to be nonnegative and piecewise-monotonic (nonincreasing, nondecreasing, or alternating segments of both). When I is constrained to be monotonic, the deconvolution yields a staircase function. The method can be used to calculate drug input rates. It is compared to previously published deconvolution methods for this purpose, using simulated data and real theophylline and pentobarbital data.

Key words

deconvolution inequality-constrained least-squares deconvolution estimation of drug absorption rate theophylline absorption pentobarbital absorption computer programs for deconvolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. P. Vaughan and M. Dennis. Mathematical basis of point-area deconvolution method for determiningin vivo input functionsJ. Pharm. Sci. 67:663–665 (1978).PubMedCrossRefGoogle Scholar
  2. 2.
    K. Iga, Y. Ogawa, T. Yashiki, and T. Shimamoto. Estimation of drug absorption rates using a deconvolution method with nonequal sampling timesJ. Pharmacokin. Biopharm. 14: 213–225 (1986).CrossRefGoogle Scholar
  3. 3.
    S. V. Huffel, J. Vandewalle, M. C. H. Roo, and J. L. Willems. Reliable and efficient deconvolution technique based on total linear least squares for calculating the renal retention functionMed. Biol. Eng. Comput. 25: 26–33 (1987).PubMedCrossRefGoogle Scholar
  4. 4.
    D. J. Cutler. Numerical deconvolution by least squares: use of prescribed input functions.J. Pharmacokin. Biopharm. 6:227–241 (1978).CrossRefGoogle Scholar
  5. 5.
    D. J. Cutler. Numerical deconvolution by least squares: Use of polynomials to represent the input function.J. Pharmacokin. Biopharm. 6:243–263 (1978).CrossRefGoogle Scholar
  6. 6.
    P. Veng-Pedersen. Model-independent method of analyzing input in linear pharmacokinetic systems having polyexponential impulse response II: numerical evaluation.J. Pharm. Sci. 69:305–312 (1980).CrossRefGoogle Scholar
  7. 7.
    P. Veng-Pedersen. Novel deconvolution method for linear pharmacokinetic systems with polyexponential impulse response.J. Pharm. Sci. 69:312–318 (1980).CrossRefGoogle Scholar
  8. 8.
    P. Veng-Pedersen. An algorithm and computer program for deconvolution in linear pharmacokinetics.J. Pharmacokin. Biopharm. 8:463–481 (1980).CrossRefGoogle Scholar
  9. 9.
    W. R. Gillespie and P. Veng-Pedersen. A polyexponential deconvolution method. Evaluation of the “gastrointestinal bioavailability” and mean in vivo dissolution time of some ibuprofen dosage formsJ. Pharmacokin. Biopharm. 13:289–307 (1985).CrossRefGoogle Scholar
  10. 10.
    P. A. Jansson, R. H. Hunt, and E. K. Plyler. Resolution enhancement of spectra.J. Optical Soc. Am. 60:596–599 (1970).CrossRefGoogle Scholar
  11. 11.
    B. R. Frieden. Image enhancement and restorationTop. Appl. Phys. 6:177–248 (1975).CrossRefGoogle Scholar
  12. 12.
    G. Wahba. Constrained regularization for ill posed linear operator equations, with applications in meteorology and medicine. In S. S. Gupta and J. O. Berger (eds.),Statistical Decision Theory and Related Topics HI, Vol. 2, Academic Press, New York, 1982. pp. 383–418.Google Scholar
  13. 13.
    M. K. Charter and S. F. Gull. Maximum entropy and its application to the calculation of drug absorption rates.J. Pharmacokin. Biopharm. 15:645–655 (1987).CrossRefGoogle Scholar
  14. 14.
    B. R. Hunt. The inverse problem of radiography.Math. Biosci. 8:161–179 (1970).CrossRefGoogle Scholar
  15. 15.
    B. R. Hunt. Biased estimation for nonparametric identification of linear systems.Math Biosci. 10:215–237 (1971).CrossRefGoogle Scholar
  16. 16.
    QPROG, IMSL, City West Boulevard, Houston, TX 77042-3020.Google Scholar
  17. 17.
    D. Goldfarb and A. Idnani. A numerical stable dual method for solving strictly convex quadratic programsMath. Program. 27:1–33 (1983).CrossRefGoogle Scholar
  18. 18.
    D. Verotta, S. Beal, and L. B. Sheiner. Semiparametric approach to pharmacokinetic/pharmacodynamic data.Am. J. Physiol. 256:R1005-R1010 (1989).PubMedGoogle Scholar
  19. 19.
    G. E. P. Box and M. E. Muller. A note on the generation of random normal deviates.Ann. Math. Statist. 29:610–611 (1963).CrossRefGoogle Scholar
  20. 20.
    H. S. Kaumeier, O. H. Kehrhahn, G. Neugebauer, D. Shuppan, J. A. Shwarz, and A. H. Staib. A crossover study after oral administration of theophylline in male volunteers (absolute bioavailability of Afonilum tablets).Int. J. Clin. Pharmacol. Ther. Toxicol. 21:339–345 (1983).PubMedGoogle Scholar
  21. 21.
    R. B. Smith, L. W. Dittert, W. O. J. Griffin and J. T. Doluisio. Pharmacokinetics of pentobarbital after intravenous and oral administration.J. Pharmacokin. Biopharm. 1:5–16 (1973).CrossRefGoogle Scholar
  22. 22.
    J. C. K. Loo and S. Riegelman. New method for calculating the intrinsic absorption rate of drugs.J. Pharm. Sci. 57:918–928 (1968).PubMedCrossRefGoogle Scholar
  23. 23.
    W. R. Gillespie, P. Veng-Pedersen, M. J. Berg, and D. D. Schottelius. Linear system approach for the analysis of an induced drug removal process. Phenobarbital removal by oral activated charcoal.J. Pharmacokin. Biopharm. 14:19–28 (1986).CrossRefGoogle Scholar
  24. 24.
    P. Veng-Pedersen and W. R. Gillespie. A note on appropriate constraints on the initial input response when applying deconvolutionJ. Pharmacokin. Biopharm. 14:441–447 (1986).CrossRefGoogle Scholar
  25. 25.
    R. Barlow, D. Bartholemew, J. Bremner, and H. Brunk.Statistical Inference Under Order Restrictions, Wiley & Sons, New York, 1972.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Davide Verotta
    • 1
  1. 1.Department of Laboratory Medicine and Division of Clinical Pharmacology, Schools of Medicine and PharmacyUniversity of California San FranciscoSan Francisco

Personalised recommendations