Skip to main content
Log in

Steady-state moxalactam pharmacokinetics in patients: Noncompartmental versus two-compartmental analysis

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Moxalactam pharmacokinetics at steady state was examined in a group of 40 patients with presumed or proven abdominal sepsis. Mean steady-state serum concentrations ranged from 27.0 to 211.0 mcg/ml and correlated inversely with creatinine clearance (r=0.91, p<0.0001). Terminal half-life ranged from 1.27 to 8.27 hr and reflected the varying renal function of the patients. Moxalactam total body clearance (CL)displayed excellent correlation with creatinine clearance as 92%(r 2×100)of the variance in clearance could be accounted for by renal function (p< 0.0001). Pharmacokinetic parameters were estimated using noncompartmental analysis based on statistical moment theory. Noncompartmentally determined CLwas in agreement with CLdetermined by nonlinear least squares regression (r=0.99, p< 0.0001).Moxalactam total body clearance is best predicted from creatinine clearance corrected for body surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Yoshida, S. Matsuura, M. Mayama, Y. Kameda, and S. Kuwuhara. Moxalactam (6059-S), a novel 1-oxa-β-lactam with an expanded antibacterial spectrum: laboratory evaluation.Antimicrob. Agents Chemother. 17:302–312 (1980).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. J. J. Schentag, P. B. Wels, D. P. Reitberg, P. Walczak, M. J. Hawkins-Van Tyle, and R. J. Lascola. A randomized clinical trial of moxalactam alone versus tobramycin plus clindamycin in abdominal sepsis. Ann. Surg. (in press).

  3. M. D. Reed, J. S. Bertino, S. C. Aronoff, W. T. Speck, and J. L. Blumer. Evaluation of moxalactam.Clin. Pharmacy 1:124–134 (1982).

    CAS  Google Scholar 

  4. W. K. Bolton, W. M. Scheid, D. A. Spyker, T. L. Overby, and M. A. Sande. Pharmacokinetics of moxalactam in subjects with various degrees of renal dysfunction.Antimicrob. Agents Chemother. 18:933–938 (1980).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. M. Lam, C. V. Manion, and A. W. Czerwinsky. Pharmacokinetics of moxalactam in patients with renal insufficiency.Antimicrob. Agents Chemother. 19:461–464 (1981).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. G. R. Aronoff, R. S. Sloan, and F. C. Luft. Pharmacokinetics of moxalactam in patients with normal and impaired renal function.J. Infect. Dis. 145:365 (1982).

    Article  CAS  PubMed  Google Scholar 

  7. A. Leroy, G. Humbert, and J. P. Fillastre. Pharmacokinetics of moxalactam in subjects with normal and impaired renal function.Antimicrob. Agents Chemother. 19:965–971 (1981).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. K. S. Israel, M. R. Black, G. L. Brier, J. D. Wolny, and K. A. DeSante. Single and multiple dose pharmacokinetics of moxalactam in normal subjects.Antimicrob. Agents Chemother. 22:94–102 (1982).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. P. Garzone, J. Lyon, V. L. Yu, J. Zuravleff, W. Diven, and W. Pasculle. Steady-state moxalactam kinetics: comparisons with other cephalosporins.Clin. Pharmacol. Ther. 30:86–94 (1981).

    Article  CAS  PubMed  Google Scholar 

  10. M. Gibaldi and D. Perrier. Drugs and the pharmaceutical sciences. InPharmacokinetics, Vol. 1, J. Swarbrick (ed.), Marcel Dekker, New York, 1975, Chaps. 2 and 5.

    Google Scholar 

  11. W. J. Jusko. Guidelines for collection and pharmacokinetic analysis of drug disposition Data. InApplied Pharmacokinetics, J. J. Schentag and W. J. Jusko (eds.), Applied Therapeutics, Inc., San Francisco, 1980, pp. 639–680.

    Google Scholar 

  12. C. Daniel and F. S. Wood.Fitting Equations to Data. Wiley-Interscience, New York, 1971.

    Google Scholar 

  13. H. G. Boxenbaum, S. Riegelman, and R. M. Elashoff. Statistical estimations in pharmacokinetics.J. Pharmacokin. Biopharm. 2:123–148 (1974).

    Article  CAS  Google Scholar 

  14. K. C. Yeh and K. C. Kwan. A comparison of numerical integrating algorithms by trapezoidal, LaGrange, and Spline approximation.J. Pharmacokin. Biopharm. 6:79–98 (1978).

    Article  CAS  Google Scholar 

  15. J. A. Ziemniak, D. A. Chiarmonte, D. J. Miner, and J. J. Schentag. HPLC determination of D and L moxalactam in human serum and urine.J. Pharm. Sci. 71:399–402 (1982).

    Article  CAS  PubMed  Google Scholar 

  16. J. Kurihara, K. Matsumoto, Y. Uzuka, H. Shishido, T. Yamada, T. Yoshida, T. Oguma, Y. Kimura, and Y. Tochino. Clinical evaluation of 6059-S, a new active oxacephem. InProc. 11th Int. Congress of Chemotherapy and the 19th Intersci. Conf. Antimicrobial Agents and Chemotherapy, Vol. 1, J. D. Nelson and C. Grassi (eds.), Am. Soc. Microbiol, Washington D.C., 1979, p. 112.

    Google Scholar 

  17. J. N. Parsons, J. M. Romano, and M. E. Levison. Pharmacology of a new oxa-β-lactam (LY127935) in normal volunteers.Antimicrob. Agents Chemother. 17:226–228 (1981).

    Article  Google Scholar 

  18. K. Yamaoka, Y. Tanigawara, T. Nakagawa, and T. Uno. A pharmacokinetic analysis program (multi) for microcomputer.J. Pharm. Dyn. 4:879–885 (1981).

    Article  CAS  Google Scholar 

  19. M. Gibaldi and D. Perrier. Drugs and the pharmaceutical sciences. InPharmacokinetics, Vol. 15, J. Swarbrick (ed.), Marcel Dekker, New York, 1982, pp. 409–416.

    Google Scholar 

  20. B. Carnahan, H. A. Luther, and J. O. Welkes.Applied Numerical Methods. Wiley, New York, 1969, pp. 27–34.

    Google Scholar 

  21. K. Siersbaek-Nielsen, J. M. Hansen, J. Kampmann, and M. Kristensen. Rapid evaluation of creatinine clearance.Lancet 1:1133 (1971).

    Article  CAS  PubMed  Google Scholar 

  22. M. M. Chrymko and J. J. Schentag. Creatinine clearance predictions in acutely ill patients.Am. J. Hosp. Pharm. 38:837–840 (1981).

    CAS  PubMed  Google Scholar 

  23. R. Luthy, R. Wise, A. Bonetti, and J. Blaster. Comparative multiple does pharmacokinetics of cefotaxime and moxalactam (LY 127935). 20th Interscience Conference on Antimicrobial Agents and Chemotherapy, New Orleans, 1980, Am. Soc. for Microbiology, Washington D.C., Abst. No. 239.

    Google Scholar 

  24. O. V. Martinez, J. U. Levi, A. Livingstone, T. I. Malinin, R. Zeppa, D. Hutson, and N. Einhorn. Biliary excretion of moxalactam.Antimicrob. Agents Chemother. 20:231–234 (1980).

    Article  Google Scholar 

  25. L. Z. Benet and R. L. Galeazzi. Non-compartmental determination of the steady-state volume of distribution.J. Pharm. Sci. 68:1071–1074 (1979).

    Article  CAS  PubMed  Google Scholar 

  26. D. Perrier and M. Mayersohn. Non-compartmental determination of the steady-state volume of distribution for any mode of administration.J. Pharm. Sci. 71:372–373 (1982).

    Article  CAS  PubMed  Google Scholar 

  27. I. L. Smith and J. J. Schentag. Non-compartmental determination of the steady-state volume of distribution during multiple dosing.J. Pharm. Sci. (in press).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a grant from Eli Lilly Company and in part by NIGMS Grant 20852 from the National Institutes of Health.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swanson, D.J., Reitberg, D.P., Smith, I.L. et al. Steady-state moxalactam pharmacokinetics in patients: Noncompartmental versus two-compartmental analysis. Journal of Pharmacokinetics and Biopharmaceutics 11, 337–353 (1983). https://doi.org/10.1007/BF01058954

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01058954

Key words

Navigation