Ukrainian Mathematical Journal

, Volume 46, Issue 5, pp 625–637 | Cite as

Filtration formulas for solutions of nonlinear equations with random right-hand sides

  • G. A. Sokhadze


Explicit filtration formulas are obtained for the solutions of nonlinear differential equations with random right-hand sides. In the case of a Gaussian random process, these formulas are simplified.


Differential Equation Nonlinear Equation Random Process Nonlinear Differential Equation Gaussian Random Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Sh. Liptser and A. N. Shiryaev,Statistics of Random Processes [in Russian], Nauka, Moscow (1974).Google Scholar
  2. 2.
    Yu. L. Daletskii and A. D. Shatashvili, “On the optimal prediction of random variables nonlinearly related to the Gaussian random variables,”Teor. Sluch. Prots., Issue 3, 30–33 (1975).Google Scholar
  3. 3.
    G. A. Sokhadze, “Equivalence of measures corresponding to solutions of certain boundary-value problems with random Gaussian perturbations,”Teor. Ver. Mat. Statist., Issue 39, 116–123 (1988).Google Scholar
  4. 4.
    G. A. Sokhadze, “Absolute continuity of measures generated with nonlinear equations,” in:New Trends in Probability and Statistics. Proceedings of Bakuriani Colloquium in Honour of Yu. V. Prohorov, Vol. 1, Bakuriani (1990), pp. 540–549.Google Scholar
  5. 5.
    C. Miranda,Equazioni Alle Derivate Paniali di Tipo Ellittico, Springer, Berlin (1955).Google Scholar
  6. 6.
    Yu. M. Berezanskii,Expansion of Self-Adjoint Operators in Eigenfunctions [in Russian], Naukova Dumka, Kiev (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • G. A. Sokhadze
    • 1
  1. 1.Kutaisi Technology UniversityKutaisi

Personalised recommendations