Ukrainian Mathematical Journal

, Volume 47, Issue 8, pp 1188–1194 | Cite as

Interpolation Whitney constants

  • Yu. V. Kryakin
  • M. D. Takev


We obtain new estimates for interpolation Whitney constants.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Whitney, “On functions with boundednth differences,”J. Mat. Pure Appl.,36, 67–95 (1957).Google Scholar
  2. 2.
    B. Sendov, “On the constants of H. Whitney,”C. R. Acad. Bul. Sci.,35, 431–434 (1982).Google Scholar
  3. 3.
    Yu. A. Brudnyi, “On one theorem on the local best approximations,”Uch. Zap. Kazan. Univ.,124, No. 6, 43–49 (1964).Google Scholar
  4. 4.
    K. Ivanov and M. Takev, “O(n In (n)) bounds of constants of H. Whitney,”C. R. Acad. Bul. Sci.,38, No. 9, 1129–1131 (1985).Google Scholar
  5. 5.
    P. Binev, “O(n) bounds of Whitney constants,”C. R. Acad. Bul. Sci.,38, No. 10, 1315–1317 (1985).Google Scholar
  6. 6.
    B. Sendov, “The constants of H. Whitney are bounded,”C. R. Acad. Bul. Sci.,38, No. 10, 1299–1302 (1985).Google Scholar
  7. 7.
    B. Sendov, “On the theorem and constants of Whitney,”Construct. Approxim.,3, 1–11 (1987).Google Scholar
  8. 8.
    B. Sendov and V. Popov,The Average Moduli of Smoothness, Wiley, New York (1988).Google Scholar
  9. 9.
    Yu. A. Brudnyi, “Whitney constants,” in:Modern Problems of the Theory of Functions. Abstracts of the All-Union School-Conference (Baku, May 19–29,1989) [in Russian], Baku (1989), p. 24.Google Scholar
  10. 10.
    Yu. V. Kryakin, “On Whitney constants,”Mat. Zametki,46, No. 2, 155–157 (1989).Google Scholar
  11. 11.
    Yu. V. Kryakin, “Whitney constants bounded by two,”Mat. Zametki,5, No. 53, 158–160 (1993).Google Scholar
  12. 12.
    B. Sendov and V. Popov,The Averaged Moduli of Smoothness [Russian translation], Mir, Moscow (1988).Google Scholar
  13. 13.
    M. Takev, “On the theorem of Whitney-Sendov,” in:Constructive Theory of Functions. Proceedings of the International Conference (Varna, May 28–June 3, 1991), Sofia (1992), pp. 269–275.Google Scholar
  14. 14.
    I. A. Shevchuk,Polynomial Approximations and Traces of Functions Continuous on a Segment [in Russian], Naukova Dumka, Kiev (1992).Google Scholar
  15. 15.
    Yu. V. Kryakin, “On the theorem of H. Whitney in Lp,”Math. Balkan., No. 4, 158–171 (1990).Google Scholar
  16. 16.
    Yu. V. Kryakin and L. G. Kovalenko, “On the Whitney theorem in the metric of Lp,”Izv. Vyssh. Uchebn. Zaved., Mat., No. 1, 69–77 (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Yu. V. Kryakin
    • 1
  • M. D. Takev
    • 2
  1. 1.Odessa Polytechnic UniversityOdessa
  2. 2.Sofia UniversitySofia

Personalised recommendations