Skip to main content
Log in

Inverse evaluation of the integral ordering of the structure and defectiveness of fibres and yarns for technical applications based on normalized values of the mechanical properties

  • Properties and Use of Chemical Fibres
  • Published:
Fibre Chemistry Aims and scope

Abstract

Methods are proposed for an integral (generalized) evaluation of the degree of ordering of the structure and defectiveness of fibres based on the inverse use of indexes of their mechanical properties — modulus of elasticity and strength — normalized with respect to their maximum attainable values. These maximum attainable values are determined in defined temperature-time conditions for a defect-free polymer crystal by several methods, obtaining values in relatively good agreement. The coefficients characterizing the overall ordering and imperfection of the structure, and the defectiveness of different types of fibres based on linear (aliphatic and aromatic), laminar (carbon), and three-dimensional (silicate) polymers were estimated. Different types of fibres, including fibres of the same type, were compared with respect to the level of structural organization and defectiveness. This could serve as a measure of the perfection of the fabrication processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. E. Perepelkin, Structure and Properties of Fibres [in Russian], Khimiya, Moscow (1985).

    Google Scholar 

  2. M. Jambrich, A. Pikler, and I. Diacik, Fizika Vlaken, Alfa, Bratislava (1988).

    Google Scholar 

  3. M. Tadocoro, Structure of Crystalline Polymers, Interscience, New York (1979).

    Google Scholar 

  4. K. E. Perepelkin, Tekst. Khim., No. 1, 9–19: No. 2 16–27, (1992).

    Google Scholar 

  5. K. E. Perepelkin, Mekh. Kompozitn. Mater., No. 3, 387–395 (1987).

    Google Scholar 

  6. K. E. Perepelkin, Mekh. Kompozitn. Mater., No. 3, 291–306 (1992).

    Google Scholar 

  7. V. S. Smirnov, K. E. Perepelkin and L. I. Fridman (eds.) New Chemical Fibres for Technical Applications [in Russian], Khimiya, Moscow (1973).

    Google Scholar 

  8. G. M. Bartenev, Superstrong and High-Strength Inorganics Fibres [in Russian], Stroiizdat, Moscow (1974).

    Google Scholar 

  9. K. E. Perepelkin, Mekh. Polim., No. 1, 34–42 (1966).

    Google Scholar 

  10. K. E. Perepelkin, Mekh. Polim., No. 6, 845–856 (1966).

    Google Scholar 

  11. K. E. Perepelkin, Khim. Volokna, No. 2, 3–13 (1966).

    Google Scholar 

  12. K. E. Perepelkin, Bolgarska Akad. Na Naukita, Izv. Khim.,23, No. 3, 447–456 (1990).

    Google Scholar 

  13. K. E. Perepelkin, Fiz.-Khim. Mekh. Mater., No. 2, 74–78 (1972).

    Google Scholar 

  14. K. E. Perepelkin and Z. Yu. Chereiskii, Mekh. Polim., No. 6, 1002–1010 (1977).

    Google Scholar 

  15. K. E. Perepelkin, Fiz.-Khim. Mekh. Mater., No. 2, 78–80 (1970).

    Google Scholar 

  16. G. M. Bartenev, Strength and Mechanism of Failure of Polymers [in Russian], Khimiya, Moscow (1984).

    Google Scholar 

  17. L. I. Slutsker, L. E. Utevski, et al., J. Polym. Sci., Polym. Symp., No. 58, 339–358 (1971).

    Google Scholar 

  18. L. P. Zosin, A. P. Verkhovets, et al., Mekh. Kompozitn. Mater., No. 3, 391–394 (1983).

    Google Scholar 

  19. W. Zurek, W. Calka, and J. Jakubczyk, Fibre Sci. Technol.,20, 199–209 (1984).

    Google Scholar 

  20. V. Kacvinsky, Chem. Vlakna,37, No. 3, 207–217 (1987).

    Google Scholar 

  21. K. E. Perepelkin, in: Carbochain Synthetic Fibres [in Russian], K. E. Perepelkin (ed.), Khimiya, Moscow (1973), pp. 165–355.

    Google Scholar 

  22. K. Riggert, Chemiefasern,21, No. 6, 379–386 (1971).

    Google Scholar 

  23. K. E. Perepelkin, in: Encyclopedia of Polymers, [in Russian], Vol. 3, Sov. Entsiklopediya, Moscow (1977), pp. 234–238.

    Google Scholar 

  24. K. E. Perepelkin, in: Encyclopedia of Chemistry [in Russian], Vol. 1, Sov. Entsiklopediya, Moscow (1988), pp. 413–416.

    Google Scholar 

  25. L. V. Avrorova, A. V. Volokhina, et al., Khim. Volokna, No. 4, 21–26 (1989).

    Google Scholar 

  26. G. A. Budnitskii, Khim. Volokna, No. 2, 5–13 (1990).

    Google Scholar 

  27. G. I. Kudryavtsev, V. Ya. Varshavskii, et al., Reinforcing Chemical Fibres for Composite Materials, [in Russian], Khimiya, Moscow (1992).

    Google Scholar 

  28. V. V. Vasil'ev (ed.), Handbook of Composite Materials [in Russian], Mashinostroenie, Moscow (1990).

    Google Scholar 

  29. E. A. Pfitzer (ed.), Carbon Fibres and Carbon Composites [in Russian], Mir, Moscow (1988).

    Google Scholar 

  30. R. M. Levit, Conducting Chemical Fibres [in Russian], Khimiya, Moscow (1986).

    Google Scholar 

  31. M. S. Aslanova, Glass Fibres [in Russian], Khimiya, Moscow (1979).

    Google Scholar 

  32. V. I. Kiselev, in: Encyclopedia of Chemistry [in Russian], Vol. 4, Bol'shaya Ross. Entsiklopediya, Moscow (1995), pp. 427–428.

    Google Scholar 

  33. V. S. Kuksenko, V. A. Ovchinnikov, and A. I. Slutsker, Vysokomolek. Soedin., Ser. A, No. 9, 1953–1957 (1969).

    Google Scholar 

Download references

Authors

Additional information

St. Petersburg State University of Technology and Design. Translated from Khimicheskie Volokana, No. 5, pp. 34–41 September–October, 1996.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perepelkin, K.E. Inverse evaluation of the integral ordering of the structure and defectiveness of fibres and yarns for technical applications based on normalized values of the mechanical properties. Fibre Chem 28, 326–335 (1996). https://doi.org/10.1007/BF01057699

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01057699

Keywords

Navigation