Advertisement

Ukrainian Mathematical Journal

, Volume 44, Issue 6, pp 697–702 | Cite as

Products of groups with cyclic sylow p-subgroups and groups with nontrivial centers

  • L. S. Kazarin
Article

Abstract

This article considers finite groups that can be decomposed into the product of two proper subgroups.

Keywords

Finite Group Proper Subgroup Nontrivial Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. I. Kostrikin, “Finite groups,” in: Mathematical Encyclopedia [in Russian], Vol. 2, Sov. Éntsikl., Moscow (1979).Google Scholar
  2. 2.
    Z. Arad and E. Fisman, “A proof of Szep's conjecture on nonsimplicity of certain finite groups,” J. Algebra,108, 340–354 (1987).Google Scholar
  3. 3.
    L. S. Kazarin, “On the product of two groups with nontrivial centers,” in: Abstracts, Nineteenth All-Union Algebra Conference [in Russian], Vol. 2, L'vov (1987), p. 116.Google Scholar
  4. 4.
    L. S. Kazarin, “On Szep's problem,” Izv. Akad. Nauk SSSR, Ser. Mat.,50, No. 3, 479–507 (1986).Google Scholar
  5. 5.
    L. S. Kazarin, “On Burnside's pα-lemma,” Mat. Zametki,48, No. 2, 45–48 (1990).Google Scholar
  6. 6.
    R. Brauer, “On finite groups with cyclic Sylow p-subgroups. I,” J. Algebra,40, 556–584 (1976).Google Scholar
  7. 7.
    R. Brauer, “Some applications of the theory of blocks of characters of finite groups. I, II,” J. Algebra,1, 152–167 (1964).Google Scholar
  8. 8.
    M. I. Isaacs, Character Theory of Finite Groups, Academic Press, New York (1976).Google Scholar
  9. 9.
    D. Gorenstein, Finite Groups, Harper and Row, New York (1968).Google Scholar
  10. 10.
    L. A. Shemetkov, Formation of Finite Groups [in Russian], Nauka, Moscow (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • L. S. Kazarin
    • 1
  1. 1.Yaroslav UniversityUSSR

Personalised recommendations